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Abstract 

Background  Patients with intellectual disabilities are shown to have a limited capacity for cooperation, 
communication,and other biological consequences, which significantly require a specialized interest in healthcare 
professionals worldwide.

Aim  In this respect, the present study was designed to evaluate the levels mineral elements, and their correlation 
with oxidative stress markers and adiposity markers; leptin (L), adiponectin (A), and L/A ratio in adolescents with 
intellectual disabilities.

Methods  A total of 350 schoolchildren aged (12–18 years) were randomly invited to participate in this prospective, 
observational study. Only 300 participants agreed to participate in this study. According to Intelligence quotients 
scores (IQ) measured by WISC-III, the participants were classified into two groups; the healthy control group (no = 180; 
IQ = 90–114); and the moderate intellectual disability (MID) group (no = 120; IQ = 35–49). Adiposity markers; body mass 
index (BMI), waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), physical activity scores, adipokines biomarkers;  
leptin, adiponectin, L/A ratio, oxidative stress, and plasma mineral elements were evaluated by prevalidated questionnaires, 
inductively coupled plasma-mass spectrometry (ICP-MS), colorimetric, and immunoassay techniques.

Results  Intellectual disability of moderate type was reported in 40% of the studied populations most of them are 
men aged 12–18 years (66.6% for men vs. 33.3 for females). Obesity was shown to be associated with the degree 
of intellectual disability of the students. There was a significant (P = 0.001) increase in the BMI, WHR, and WHtR 
scores as obesity markers with poor physical activity (P = 0.01) in students with poor disability compared to healthy 
controls (HC). The levels of leptin (P = 0.001), adiponectin (P = 0.01), and L/A ratio (P = 0.01) as adiposity biomarkers 
were significantly increased in students with MID compared to healthy controls. Also, oxidative stress measured 
by malondialdehyde (MDA) (P = 0.01) and total antioxidant capacity (TAC) (P = 0.01) were significantly increased 
in students with MID compared to healthy control subjects. In addition, mineral elements were shown to be linked 
with intellectual disability. The data showed that the levels of Fe, Mn, Zn, Hg, Pb, Ca, Cr, Mg, and Ni significantly 
(P = 0.001) increased, and the levels of Al, Na, K, Cu, and Zn/Cu ratio significantly (P = 0.001) decreased in subjects 
with MID  
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compared to healthy controls. Correlation analysis concluded that changes in mineral elements significantly correlated 
with adiposity markers, oxidative stress, and the scores of intellectual disability (WISC III-IQ score).

Conclusion  The intellectual disability of moderate type (MID) was associated with abnormal changes in the levels 
of essential mineral elements and adipokines and increased levels of cellular oxidative stress. Thus, evaluating 

plasma mineral elements and adipokines levels could be 
a potential diagnostic parameter for diagnosing MID.

Keywords  Oxidative stress, Mineral elements, Adipokines, 
Intellectual disability, Adolescence

Introduction
Obesity is considered one of the most problematic issues 
of health worldwide. It affects all populations at differ-
ent ages and socio-economic levels. Most studies reveal 
the contribution of obesity to human diseases, including 
diabetes mellitus [1, 2]. It becomes significantly associ-
ated with food containing high calories and poor physi-
cal activity. Several research studies linked obesity with 
economic, social, and lifestyle changes that lead to major 
public health problems [2–4]. In childhood, obesity 
is  shown to be linked with several genetic and environ-
mental factors. Lifestyle, social culture, and genealogy 
play a potential role in the spreading rates of obesity 
worldwide [4–8].

On biochemical and cellular levels, obesity is controlled 
by some proteins expressed from adipocytes, especially 
leptin. Leptin is a neurohormone (16 kDa) expressed by 
adipocytic cells and predominantly released into blood 
circulations. Physiologically, the release of leptin acts as 
a signal to the brain to control the storage of energy by 
the human body [9]. Thus, it was reported that leptin sig-
nificantly controls food intake by inhibiting the release 
of Neuropeptide Y (NPY) through its hypothalamic 
receptors, reducing food intake with increased body 
thermogenesis [9].

Essential menirals and trace elements are cofactors 
essential for several cellular processes in human bodies. 
It plays potential roles in normal and diseased cells as 
regulatory, immunologic, or antioxidant factors, particu-
larly as cofactors or essential components in the struc-
tures of cellular enzymes [10]. In obesity, trace elements 
are  shown to be associated with the severity of the dis-
ease and its associated complications, such as peroxida-
tion, inflammation, and metabolic disturbances [11, 12].

Previously, the deficiency in the levels of cellular 
micronutrients was reported to be significantly asso-
ciated with fat deposition and chronic inflammation 
[13–15]. In addition, low levels of iron, zinc, and a defi-
ciency in the levels of essential vitamins (A, E, and C) 
were estimated in children and adolescents with obe-
sity compared to non obese controls of the same age 

[16–19]. These micronutrients, especially vitamins (A, 
E, and C), are essential for inhibiting or suppressing 
leptin expression [13, 20–22].

Several research studies reported a significant associa-
tion between obesity levels and youth with intellectual 
and developmental disabilities. Obesity was significantly 
reported in children or adolescents with intellectual dis-
abilities (ID). It was nearly twice the prevalence for those 
without ID (28.9% vs. 15.5%) [23, 24]. This may be related 
to poor physical activity and longer time spent sitting in 
front of screen-based media [25–30]. In childhood and 
adolescence, cognitive, behavioral, and neuropsycho-
logical defects; particularly ID, showed to be associ-
ated respectively with exposure to heavy metals such as 
arsenic (As), cadmium (Cd), manganese (Mn), mercury 
(Hg), and Lead (Pb) [31–33]. Reduced IQ and cognitive 
functions, learning difficulties, and impaired growth 
were reported in children with Pb blood levels above 10 
μg·dL − 1 [34–37]. The pathophysiology of metal intoxi-
cation and producing intellectual or developmental 
defects may proceed with cellular free radical oxidative 
stress mechanisms [38, 39]. Higher malondialdehyde 
(MDA) and lower total antioxidant capacity (TAC) were 
reported as an indicator of cell membrane injury [38, 39]. 
In this respect, the present study was designed to evalu-
ate the levels of  mineral elements, and their correlation 
with oxidative stress markers and adiposity markers; lep-
tin (L), adiponectin (A), and L/A ratio in adolescents with 
intellectual disabilities.

Materials and methods
Subjects
A total of 350 Saudi school students aged (12–18  years) 
attending various schools in Riyadh were randomly 
invited to participate in this study. Firstly, the school 
administration was notified about the need and impor-
tance of the study. Once necessary permission was 
obtained, they connected us with the students and their 
parents. Only 300 participants agreed to participate in 
this study. None of the selected participants have any 
physical disabilities, genetic disorders, or acute infec-
tions or received medical therapy for ID or obesity that 
had affected the data. Based on the intelligence quotients 
(IQ), the participants were classified into two groups; the 
normal healthy group (no = 180; IQ = 90–114); and the 
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moderate ID group (no = 120; IQ = 35–49). Whole blood 
samples were collected from all participants and centri-
fuged ( 1 min at 1400 rpm), and the resulting plasma sam-
ples were kept frozen at—20°C until reused. Demographic 
and clinical data of the participants are in Table 1.

Ethical considerations
The current protocol was prepared according to the 
ethical guidelines of the 1975 Declaration of Helsinki 
and finally reviewed and approved by the ethics sub-
committee of King Saud University, Kingdom of Saudi 
Arabia, under file number ID: RRC-2015–089. All par-
ticipating schoolchildren were informed of the steps 
and all protocol details. The participants’ parents were 
assigned to return written informed consent before 
data collection.

Intelligence assessment
The participants’ intelligence quotients (IQ) were evalu-
ated using a pre-validated Wechsler Intelligence Scale 
for Children (WISC-III), as previously reported [40, 41]. 
The results of IQ measured by WISC-III are categorized 
into seven scores; Mild intellectual disability (IQ 55–69), 

Moderate intellectual disability (IQ 40–54), below nor-
mal (IQ 70–84), normal (IQ 85–114), Above normal (IQ 
115–129), Gifted (IQ 130–144), and Highly Gifted (IQ 
145–160). In this study, IQ measurements of the partici-
pants were in the range of normal (IQ = 85–114; n = 180) 
and moderate (IQ = 40–54, n = 120), respectively.

Anthropometric measurements
All participants’ height and weight were estimated 
using standardized procedures such as a tape measure 
and calibrated Salter Electronic Scales (Digital Pearson 
Scale; ADAM Equipment Inc., Columbia, MD, USA), 
respectively. Validated universal cutoff values [42, 43] 
were used to calculate adiposity parameters, such as 
BMI and Waist-to-height ratio (WHtR), respectively.

Assessment of adiposity markers
Adiponectin and leptin levels as adiposity biomark-
ers were estimated in all participants’ plasma samples 
using a specific ELISA kit (R&D Systems®, Minne-
apolis, USA). All samples were estimated in duplicate 
according to the manufacturer’s instructions to avoid 
inter-assay variation, as previously reported [44]. In 
contrast, the detection limits for adiponectin and leptin 
were 5 pg/mL, respectively [44].

Assessment of essential mineral elements concentrations
In this experiment, plasma samples of all participants 
were subjected to estimate mineral elements concen-
trations by using a Thermo Fisher Scientific (Waltham, 
MA, USA) iCAP— Q instrument, equipped with stand-
ard components and accessories: a MicroMist™ nebu-
lizer (Glass Expansion, Port Melbourne, Australia) as 
previously reported [45]. This method used multi-ele-
ment standard solutions (Plasma CAL, SCP Science, 
Baie D’Urfé, Canada) to prepare calibration standards. 
In addition, an iso standard solution (Madrid, Spain) 
was used to prepare the internal standard solution. Ten 
replicate measurements of the blank solution (2% v/v 
HNO3) were performed to calculate the limits of detec-
tion (LoD) as previously reported [45].

Assessment of oxidative stress
As a quantitative measure of lipid peroxidation, 
Malondialdehyde was estimated in the plasma samples 
using high-performance liquid chromatography, as 
mentioned previously [46–48]. In addition, a total 
antioxidant capacity (TAC), a measure of oxidative 
stress, was estimated in the plasma samples using a 
colorimetric assay kit (K274-100; BioVision, Milpitas, 
CA, USA). The antioxidant activity was measured as a 

Table 1  Baseline of clinical and laboratory characteristics of the 
study groups. Healthy control (HC) and adolescents subjects 
suffering from moderate intellectual disabilities (MID) (n = 300; 
mean ± SD)

Values are expressed as mean ± SD; Kruskal–Wallis one-way ANOVA and post-
hoc (Tukey HSD) test were used to compare the mean values of the studied 
variables. Variables were considered significantly different at P < 0.05

Abbreviation: HC Healthy control, BMI Body mass index, WHR Waist to hip ratio, 
WHtR Waist to height ratio, PA Physical activity, VO2 max maximal oxygen uptake, 
BMR Basal metabolic rate (kcal/day), TEE Total energy expenditure (kcal/day), 
WISC- IQ Wechsler Intelligence Scale test

Parameters HC (n = 180; 60%)
(IQ = 85–114)

MID (n = 120; 
40%)
(IQ = 40–54)

P-value

Age in years 14.86 ± 2.5 14.9 ± 1.5 0.123

Genders (B/G) 120/60 80/40 0.13

BMI (kg/m2) 18.6 ± 2.3 32.8 ± 6.3 0.001

Waist (cm) 79.3 ± 5.1 116.3 ± 8.3 0.001

Hips (cm) 92.5 ± 2.6 78.9 ± 11.8 0.001

WHR 0.79 ± 0.029 1.47 ± 0.16 0.001

WHtR 0.46 ± 0.05 0.89 ± 0.09 0.001

Physical activity (PA): 0.01

  VO2 max  
(ml/kg*min)

32.6 ± 4.31 21.3 ± 2.1

  BMR (kcal/day) 3.6 ± 2.5 1.36 ± 1.4

  TEE (kcal/day) 6.7 ± 5.3 2.9 ± 1.6

  PA scores 4.9 ± 3.1 1.9 ± 1.25

WISC- IQ test scores 93.8 ± 2.6 39.2 ± 3.1 0.001
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function of Trolox concentration at a wavelength of (λ; 
570 nm) as previously reported [47, 48].

Assessment of physical activity
Physical fitness score is measured as maximum oxy-
gen uptake (VO2 max) and total energy expenditure 
(TEE), as previously reported [29, 47–49]. Total energy 
expenditure (TEE) was evaluated by calculating basal 
metabolic rates (BMR) from body mass, height, age, 
sex, and type of physical activity of all participants 
using a pre-validated equation as previously reported 
[29, 47, 48].

Statistical analysis
In this study, the statistical software SPSS version 18 was 
used. The results obtained were expressed as Mean, and 
standard deviation among groups, Kruskal–Wallis one-
way ANOVA and post-hoc (Tukey HSD) test were used 
to compare the mean values of the studied variables [45]. 
Additionally, post hoc pairwise multiple comparisons 
using Bonferroni correction and the one-way analy-
sis of covariance were performed to evaluate significant 
differences in trace elements hair contents between the 
study groups. The relationship between various study 
parameters was performed in steps by Spearman rank 
correlation analysis. The data obtained were considered 
significant at P < 0.05 [45].

Results
The clinical and baseline characteristics of 300 adoles-
cents with a mean range of age 14.9 ± 1.5 years who par-
ticipated in this prospective study are shown in Table 1.

In this study, intellectual disability of moderate type 
(MID; WISC-IR score:39.2 ± 3.1) was reported in 40% 
of the study population, most of whom are men (66.6% 
for men vs. 33.3 for females) (Table  1). Compared to 
healthy control subjects, adiposity markers; BMI, waist, 
hips, WHR, and WHtR significantly increased (P = 0.001) 
in adolescents with MID (Table 1). In addition, physical 
activity scores measured in terms of VO2 max, BMR, and 
TEE significantly decreased (P = 0.01) in adolescents with 
(MID) compared to those of healthy controls (HC), as 
shown in Table 1 and Fig. 1. Also, IQ-score was lower in 
adolescents with MID compared to healthy controls, as 
shown in Table 1 and Fig. 1.

In this study, plasma mineral elements were signifi-
cantly estimated in all participants (Table 2). Adolescents 
with MID showed a significant increase in the levels of 
Fe, Mn, Zn, Hg, Pb, Ca, Cr, Mg, and Ni, and they signifi-
cantly decreased in Al, Na, K, Cu, and Zn/Cu ratio levels 
compared to healthy controls (Table 2).

The physiological changes in the plasma levels of min-
eral elements correlated positively with the WISC-IQ 
score, estimating the potential role of these elements in 
the pathogenesis of intellectual disability among younger 
ages with MID (Table  3). Moreover, the results showed 
that the increase in the levels of Fe, Mn, Zn, Hg, Pb, Ca, 
Cr, Mg, and Ni, and the decrease in the levels Al, Na, K, 
Cu, and Zn/Cu ratiocorrelated positively with the cellular 
oxidative stress parameters;  MDA, TAC, and negatively 
with adiposity parameters; BMI, WHR, and WHtR as 
shown in (Table 4).

However, increased or decreased levels of mineral ele-
ments showed no statistical significance with gender 
effect (Table 4). The increment of Fe, Mn, Zn, Hg, Pb, Ca, 
Cr, Mg, Ni, and decrement in the levels of Al, Na, K, Cu, 
and Zn/Cu ratio showed no significant effect with gender 
in subjects with ID (Table 4).

Also, leptin, adiponectin, and L/A ratio as adipokines 
biomarkers were estimated in all studied populations. 
Higher plasma levels of leptin and L/A ratio and lower 
adiponectin concentrations were reported in adolescents 
with MID (P = 0.001) compared with healthy controls 
(Fig. 1). In addition, MDA and TAC as parameters of oxi-
dative stress were significantly evaluated in this study. 
The levels of MDA significantly increased, and TAC sig-
nificantly decreased in adolescents with MID (P = 0.001) 
compared to healthy controls (Fig. 1).

In subjects with MID, the correlation between serum 
levels of adipokines and plasma mineral elements 
and clinically studied adiposity variables are shown 
in (Table  4). Leptin, adiponectin, and L/A as adipos-
ity markers correlated negatively with BMI, WHtR, PA 
scores, and TAC and positively with gender, WISC-IQ 
score, MDA, and plasma trace elements (Table 5).

Regarding gender effect on physical activity, adipokines 
levels, and oxidative stress, girls with MID had lower 
physical activity scores than males in the same group 
(Fig.  2A). Also, higher leptin and L/A ratios with lower 
plasma adiponectin levels were reported in girls with 
MID compared to males of the same group (Fig.  2B, 
C and D). However, in normal control subjects, there 
were comparable levels of the studied parameters; 
leptin (p = 0.001), adiponectin (p = 0.001), and L/A ratio 
(p = 0.001) in boys compared to healthy girls as shown in 
Fig. 2B, C and D). In addition, a significant increase in the 
levels of MDA and a decrease in the levels of TAC activity 
were reported in girls (P = 0.001) compared to men of the 
same group ( Fig. 3A and B).

Discussion
Intellectual and developmental disabilities are broadly 
conceptualized to include a range of physical, mental, and 
behavioral impairments [26]. Patients with intellectual 
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Fig. 1  Plasma levels of adiponectin, leptin (L), and L/A ratio (pg/mL) (A), MDA and TAC (B), along with physical activity (C), and IQ-score (D) in HC 
(n = 180) and MID (n = 120). **p < 0.01 (KruskaleWalis, Dunn’s post hoc test). ***p < 0.001 (KruskaleWalis, Dunn’s post hoc test). HC: healthy controls, 
MID: moderate intellectual disability; IQ: Intelligence quotients; MDA: malondialdehyde, TAC: total antioxidant capacity
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disabilities have been shown to have a limited capacity 
for cooperation, communication, and other biological 
consequences, which significantly requires a specialized 
interest from healthcare professionals worldwide [50, 51].

In this study, intellectual disability of moderate type 
(MID) was reported in 40% of the studied populations, 
most of whom are men aged 12–18 years (66.6% for men 
vs. 33.3 for females). The incidence of MID among the 
studied sample was linked with the release of adiposity 
markers; BMI, WHR, and WHtR, and lower physical 
activity compared to healthy control subjects. Matched 
with our results, obesity was significantly reported in 
children or adolescents with intellectual disabilities (ID); 
it was nearly twice the prevalence for those without ID 
(28.9% vs. 15.5%) [23, 24]. This may be related to poor 
physical activity and longer time spent sitting in front of 
screen-based media [26–30].

Supported data also recently reported that childhood 
overweight or obesity is clearly very pervasive or prob-
lematic among healthy children and those with ID [23, 
52–55]. This is commonly attributed to poor physical 
activity and increased sedentary lifestyles, such as excess 
food intake and screen-based media use for longer periods 
[23, 52–55]. In addition, an elevated weight status among 
youth with ID is the leading risk for mental health prob-
lems and increased morbidity and mortality rates among 
adults with ID [55]. Thus, increasing physical activity and 
a self-monitoring diet were recommended among younger 
and older ages to yield clinically meaningful weight losses 
among adults with ID, reducing the severity of ID-related 
consequences [26, 56, 57].

Despite the prevalence of obesity increasing and pre-
vailing among people with disabilities [58, 59], surpris-
ingly, no or little attention has been paid to addressing 
the profile or potential roles of adipokines as measures 
of adiposity and metabolic disorders and oxidative stress 
(OS) among youth with disabilities [60].

Table 2  Mineral elements levels (µg/g) in plasma samples of the 
study participants, reported as mean ± SD and (range) according 
to the intellectual disability status measured by the Wechsler 
Intelligence Scale test. (HC = healthy control; MID = moderate 
intellectual disabilities

Data expressed as mean ± SD. Post hoc analysis using the Bonferroni method; 
The data obtained were deemed significant at P < 0.05 (HC vs. Moderate ID)

Element (µg/g) HC (n = 180; 60%)
(IQ = 85–114)

MID (n = 120; 40%)
( IQ = 40–54)

P-value

Elemental decrease (⬇)

  Al 4.5 ± 2.8 2.9 ± 1.8 0.001

  Na 31.7 ± 4.7 18.2 ± 2.8 0.001

  K 6.8 ± 4.6 4.7 ± 2.5 0.001

  Zn/Cu ratio 0.69 ± 0.11 0.41 ± 0.18 0.001

  Cu 116.3 ± 8.3 89.3 ± 12.8 0.001

Elemental increase (⬆)

  Zn 25.7 ± 3.1 36.5 ± 9.7 0.001

  Fe 3.75 ± 2.8 8.7 ± 4.3 0.001

  Hg 0.85 ± 0.89 1.7 ± 0.42 0.001

  Pb 0.21 ± 0.12 0.42 ± 0.13 0.001

  Ca 6.2 ± 1.5 8.7 ± 1.3 0.001

  Cr 22.3 ± 4.6 31.1 ± 2.4 0.001

  Mg 1.5 ± 1.1 2.9 ± 0.86 0.001

  Ni 2.7 ± 0.25 4.2 ± 1.5 0.001

  Mn 0.18 ± 0.120 0.95 ± 1.14 0.001

Table 3  Correlation between plasma mineral elements with 
WISC-IQ score as a measure of ID in healthy control (HC) and 
adolescents with MID

Element (µg/g) HC (n = 180; 60%)
(IQ = 85–114)

MID (n = 120; 40%)
( IQ = 40–54)

R P R P

Elemental decrease (⬇)

  Al 0.012 0.01 0.015 0.05

  Na 0.015 0.05 0.025 0.05

  K 0.036 0.05 0.039 0.05

  Zn/Cu ratio 0.056 0.01 0.058 0.01

  Cu 0.035 0.01 0.49 0.02

Elemental increase (⬆)

  Zn 0.4051 0.001 0.057 0.001

  Fe 0.038 0.006 0.046 0.008

  Hg 0.035 0.01 0.037 0.05

  Pb 0.036 0.01 0.048 0.02

  Ca 0.038 0.001 0.042 0.002

  Cr 0.012 0.001 0.048 0.003

  Mg 0.024 0.001 0.052 0.003

  Ni 0.021 0.001 0.058 0.002

  Mn 0.035 0.001 0.065 0.001

Table 4  Correlation between plasma mineral elements and 
adiposity parameters, WISC- IQ score,oxidative stress, and gender 
in adolescents with MID

a { Fe, Mn, Zn, Hg, Pb, Ca, Cr, Mg, Ni}; b{ Al, Na, K, Cu, and Zn/Cu ratio}; cData are R 
(spearman)

Variables Plasma Trace elementsc

Elements 
with
Increased 
valuesa

Elements with 
Decreased 
valuesb

R P R P

Gender (M/F) 0.0125 0.12 0.034 0.18

WISC- IQ score 0.124 0.001 0.068 0.001

Adiposity paramters (BMI, WHR, WHtR) -0.524 0.001 -0.089 0.001

Oxidative stress (MDA, TAC) 0.452 0.001 0.256 0.001
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In the present study, adiponectin and leptin, the most 
essential adipokines associated with adiposity and meta-
bolic disorders, were estimated among adolescents e with 
ID disabilities. Changes in plasma levels of leptin, L/A 
ratio, and adiponectin are significantly associated with the 
incidence of ID among adolescents. Higher plasma levels 
of leptin and L/A ratio and lower adiponectin concentra-
tions were significantly reported in adolescents with MID 
(P = 0.001) compared with the healthy controls.

In addition, MDA and TAC as parameters of oxidative 
stress were significantly evaluated in this study. The levels 
of MDA significantly increased, and TAC significantly 
decreased in adolescents with MID (P = 0.001) compared 
to the healthy controls.

In adolescents, obesity was associated with severe 
health complications such as mental disorders, long-
term vascular complications, oxidative stress, and 
higher rates of severe metabolic syndrome [61, 62] pre-
viously. At younger ages, the lower levels of adiponectin 
and the higher levels of leptin were  shown to be asso-
ciated with the risk for mental health problems, par-
ticularly ID [26, 23, 52–62]. Similarly, the levels of OS 
measured by MDA were significantly higher, along with 
a reduction in TAC activity in persons with ID com-
pared to the control group [38, 39, 46].

In this current study, leptin, adiponectin, and L/A were 
measured as markers of adiposity in subjects with ID cor-
related negatively with BMI, WHtR, PA scores, and TAC 
and positively with gender, WISC-IQ score, and MDA. 
A cascade of events characterized by an asymptomatic 
inflammatory process, including inflammatory cytokines 
along with oxidative stress significantly associated with 
the severity of intellectual disabilities (ID) among older 
and younger ages [46, 62, 63]. Thus, monitoring the lev-
els of oxidative and adipokine molecules could serve as 

biomarkers of ID which may allow early diagnosis and 
intervention and improve the quality of care for persons 
with ID.

In obese people, the metabolic disturbances are 
decompensated. Although overweight is a preclinical 
condition, obesity is a clinically manifested metabolic 
disorder, including mineral imbalances [12], which could 
play a potential role in the pathogenesis of intellectual 
disabilities (ID).

In this study, plasma mineral elements were estimated 
in all participants. A significant increase in the levels of 
Fe, Mn, Zn, Hg, Pb, Ca, Cr, Mg, and Ni, and a decrease in 
the levels of Al, Na, K, Cu, and Zn/Cu ratio were reported 
in cases with MID compared to healthy controls. Changes 
in the levels of mineral elements correlated positively 
with plasma levels of adipokines; leptin, adiponectin, L/A 
ratio, MDA, TAC, and ID score (WISC-IQ score) and 
negatively with adiposity parameters; BMI, WHR, and 
WHtR. In addition, the increment of Fe, Mn, Zn, Hg, Pb, 
Ca, Cr, Mg, Ni, and decrement in the levels of Al, Na, K, 
Cu, and Zn/Cu ratio showed no significant effect with 
gender in subjects with ID.

Mineral elements as essential nutrients showed 
potential regulatory, immunologic, and antioxidant 
functions in biological systems [10]. Their potential 
action was significantly related to their incorporation 
as essential components or cofactors of enzymes 
throughout cellular metabolism [10]. Thus, it was 
reported that trace elements and minerals interfere 
with the pathogenesis of obesity and its complications, 
such as mental diseases, mainly through their 
involvement in the processes of peroxidation and 
inflammation [11]. Reduced IQ and cognitive 
functions, learning difficulties, and impaired growth 
were reported in children with Pb blood levels below 

Table 5  Correlation between adipokines biomarkers with plasma mineral elements and clinically studied variables of adiposity in 
adolescents with MID

Variables Adipokines (pg/ml) as markers of adiposity

Leptin (L) Adiponectin (A) L/A ratio

R P R P R P

BMI -0.215 0.01 -0.238 0.01 -0.324 0.001

WHR -0.258 0.01 -0.342 0.01 -0.365 0.001

WHtR -0.235 0.01 -0.369 0.05 -0.342 0.01

PA score -0.251 0.05 -0.392 0.01 -0.259 0.001

Gender 0.328 0.01 0.393 0.01 0.254 0.01

MDA 0.265 0.05 0.256 0.002 0.249 0.001

TAC​ -0.368 0.001 -0.238 0.002 -0.456 0.001

Mineral elements 0.358 0.001 0.367 0.004 0.357 0.01

WISC- IQ score 0.325 0.002 0.213 0.01 0.256 0.001
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Fig. 2  Effect of Gender on physical activity (A), plasma levels of adipokines (pg/mL); leptin (B), Adiponectin (C), and L/A ratio (D) in HC (n = 180) 
and adloscence withMID (n = 120). HC: healthy controls, MID: moderate intellectual diability. **p < 0.01. ***p < 0.001 ManneWhitney test
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10 μg·dL − 1 [34–37]. Also, the pathophysiology 
of mental intoxication and producing intellectual 
or developmental defects may proceed via cellular 
free radical oxidative stress mechanisms [38, 39]. In 
recent studies, the levels of iron, copper, and zinc 
were lower in the plasma / serum of the children with 
intellectual disabilities compared to typically developing 
controls [64–68]. However, the relationship between 
physiological antagonists and intellectual activity is 
less clear. While some studies have suggested that 
excess intake of certain minerals can interfere with the 
absorption or utilization of other essential minerals 
[69–71], it is not clear how this affects cognitive 
function,  and intellectual abilities in children and 
adolescents.

The usual normal human health needs adequate 
amounts of essential and trace elements with optimum 
levels either increasing or decreasing according to 
the vital cellular processes [72–76]. It was reviewed 
previously that the administration of selective 
antioxidants along with essential trace elements and 
minerals were required efficiently to reduce the extent of 
oxidative damage and related complications and to avoid 
serious diseases such as beta-thalassemia major and 
other brain-related disorders [76]. Elements and minerals 
should be  present in the body in appropriate amounts 
and must be available for reacting with other elements to 
form critical molecules as well as to participate in various 
important chemical reactions [77].

According to the effect of gender, a clinical change in 
the levels of adipokines; leptin, adiponectin, L/A-ratio, 

Fig. 3  Effect of Gender on oxidative stress plasma levels MDA (A) and TAC (B) in HC (n = 180) and adloscence withMID (n = 120). *p < 0.01. 
**p < 0.001 Manne Whitney test. MDA: malondialdehyde, TAC: total antioxidant capcity, HC: healthy controls, MID: moderate intellectual diability
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oxidative stress; MDA, TAC, and detrimental changes 
in the levels of essential trace elements were reported in 
girls with MID compared to men of the same category.

In addition to that, the levels of adipokines and trace 
elements were clinically associated with adiposity param-
eters; BMI, WHR, WHtR, and the severity score (WISC-
IQ score) of the severity of intellectual disabilities (ID). 
It was suggested previously that the inadequate ingress 
of trace elements into the biological cells may provide 
deleterious effects on different tissue functions and may 
lead to disease [78]. For this reason, analyzing changes to 
oligo-element concentrations in patients with MID could 
lead to a better understanding of any functional abnor-
malities associated with MID [78–80].

Finally, significant changes in plasma concentrations 
of plasma mineral elements were reported in obese ado-
lescents with MID, which correlated positively with oxi-
dative stress parameters; MDA, TAC, and adipokines; 
leptin, adiponectin, L/A ratios, and other related bio-
markers of adiposity.

Strengthen and limitations
Our study had several limitations. Although our study 
generally showed the importance of identifying the lev-
els of mineral elements and their association with obesity 
and intellectual disability scores among younger aged 
12–18 individuals, the lack of association between com-
promised nutritional status due to factors such as feed-
ing difficulties, limited food choices, and medication 
side effects should be addressed to evaluate long-lasting 
changes of mineral elements and their essential roles in 
the pathogenesis of intellectual disability among younger 
ages. Our results can be interpreted as preliminary find-
ings. Thus, further studies based on long follow-ups are 
recommended to understand the potential association 
of mineral elements with intellectual activities.There-
fore, individualized assessments of nutritional status and 
mineral intake are important for guiding appropriate 
interventions and monitoring the progress of intellectual 
abilities among children and adolescents. In addition, 
our study recommended that it is important for students 
with moderate intellectual disabilities to receive adequate 
levels of essential minerals in their diet to support their 
overall health and well-being. A balanced and varied diet 
that includes a variety of nutrient-dense foods can help 
ensure adequate mineral intake.

Conclusions
Moderate intellectual disability (MID) was associated 
with abnormal changes in essential mineral elements and 
adipokines levels and increased levels of cellular oxida-
tive stress. Thus, evaluation of the plasma mineral and 

trace elements, and adipokines levels is used as a poten-
tial diagnostic parameter in diagnosing MID.
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