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Abstract

Sequence-specific transcription factors (TFs) recognize motifs of related nucleotide sequences at their DNA binding
sites. Upon binding at these sites, TFs regulate critical molecular processes such as gene expression. It is widely
assumed that a TF recognizes a single “canonical” motif, although recent studies have identified additional “non-
canonical” motifs for some TFs. A comprehensive approach to identify non-canonical DNA binding motifs and the
functional importance of those motifs’ matches in the human genome is necessary for fully understanding the
mechanisms of TF-regulated molecular processes in human cells. To address this need, we developed a statistical
pipeline for in vitro HT-SELEX data that identifies and characterizes the distributions of non-canonical TF motifs in a
stringent manner. Analyzing ~170 human TFs’ HT-SELEX data, we found non-canonical motifs for 19 TFs (11%).
These non-canonical motifs occur independently of the TFs’ canonical motifs. Non-canonical motif occurrences in
the human genome show similar evolutionary conservation to canonical motif occurrences, explain TF binding in
locations without canonical motifs, and occur within gene promoters and epigenetically marked regulatory
sequences in human cell lines and tissues. Our approach and collection of non-canonical motifs expand current
understanding of functionally relevant DNA binding sites for human TFs.

Introduction
Sequence-specific regulatory proteins, also known as tran-
scription factors (TFs), are generally assumed to recognize
a single motif of related nucleotide sequences at their
DNA binding sites. Recent studies [18, 28], however, have
shown that some TFs recognize motifs that are different
from their single “canonical” motifs. This phenomenon of
“non-canonical” motifs was first described in PBM (pro-
tein-binding microarray) data [3, 19], but later HT-SELEX
(high-throughput systematic evolution of ligands by expo-
nential enrichment) datasets suggested that motifs found
in addition to the canonical motifs are not too distinct --
most often, those are due to a TF’s ability to dimerize [14]
or due to minor sequence variations flanking the

canonical motif [22]. Thus, questions remain open on
whether non-canonical motifs are actually rare and
whether their cognate sites in the human genome have
any potential function.
In this work, we explore these questions through re-

analysis of HT-SELEX data. We define a TF’s non-
canonical motifs as sequence motifs that are significantly
different from its canonical motifs, are at least as enriched
as the canonical motifs in its in vitro DNA binding data,
and can explain the TF’s binding in sequences where ca-
nonical motifs are absent. To investigate the existence of
non-canonical motifs, we analyzed a recent high-quality
in vitro HT-SELEX dataset of 169 human TFs [35]. We
developed a statistical pipeline that applies a set of conser-
vative criteria on these datasets and comprehensively tests
for the existence of non-canonical motifs. For 19 out of
169 TFs (11%), we identify high-confidence non-canonical
motifs that computationally validate in another recent
HT-SELEX dataset [36]. By utilizing in vivo TF-DNA
binding data, evolutionary conservation, and epigenetically
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marked regulatory sequences, we find that the non-
canonical motif matches in the human genome have po-
tential functional roles. Our analyses suggest that the ex-
istence, extent, and functional importance of non-
canonical motifs are likely underestimated. Our approach
is broadly applicable for identifying non-canonical motifs
and assessing their functional relevance.

Results
Non-canonical motifs are not rare and occur
independently of canonical motifs while showing similar
enrichments
To systematically investigate the existence of non-
canonical motifs in in vitro HT-SELEX data, we developed
a pipeline combining the standard practices of HT-SELEX
data modeling [29] with an additional set of conservative
filtering criteria (Methods). Briefly, following Slattery
et al.’s approach, we first compute the most likely length L
for a TF’s motif (effective length). Next we rank the L-mers
based on their enrichment in the TF’s HT-SELEX data.
We then identify the canonical L-mers (the L-mers
matching the TF’s CIS-BP motifs [33]) and the non-canon-
ical L-mers (the L-mers that are as enriched as the canon-
ical L-mers but do not match CIS-BP motifs). We then
cluster the non-canonical L-mers into motifs and report
the ones showing statistically significant differences from
CIS-BP motifs. We impose additional criteria throughout
the pipeline to ensure that any observed signal of non-
canonical motifs is likely not an artifact of the HT-SELEX
procedure [23]. Using this pipeline, we analyzed 169 high-
quality HT-SELEX datasets that Yang et al. presented in
their recent study [35]. Yang et al. resequenced these data-
sets from [14] at a significantly higher depth (on average
~10-fold increase in depth) and filtered the reads through
a quality-control pipeline.
Our analysis revealed potential non-canonical motifs

for 28 out of 169 TFs (Table 1, Supplementary Table 1).
We validated these motifs against a second independent
HT-SELEX dataset from Yin et al. [36], tested if they are
enriched in in vivo ChIP-seq data [17, 37, 38], and ex-
amined them for extensions or dimers of CIS-BP motifs
(Supplementary Text 1 and 2). Based on these analyses,
we split the 28 motifs into three categories with different
strengths of evidence for their being functional, non-
canonical motifs. The top two categories include nine-
teen motifs, which we refer to as non-canonical motifs
[17, 37, 38].
The top category includes eight non-canonical mo-

tifs that are truly distinct from their CIS-BP motifs.
Unlike the examples mentioned in previous studies
[14, 22], these non-canonical motifs could not be
marked as dimers or as flanking sequence variations
of the CIS-BP motifs. As examples, we show the non-
canonical motifs of ZNF784 (Zinc Finger Protein

784), ONECUT3 (One Cut Homeobox 3), and CEBPG
(CCAAT/enhancer-binding protein gamma) in Fig. 1.
The ZNF784 non-canonical motif shown in Fig. 1a
explains 9% of oligos, i.e., these oligos do not contain
any significant matches to the CIS-BP motifs of
ZNF784 (as identified by FIMO [10] at a p-value
threshold of 10−4, see Methods). We repeated our
motif occurrence analysis using FIMO at a very flex-
ible p-value threshold of 10−2 and asked if any CIS-
BP motif occurrences at this threshold overlaps with
the L-mers that constitute the non-canonical motif of
ZNF784. For those cases, we assign to the L-mer the
p-value of the overlapping motif occurrence. For the
other L-mers, where ZNF784’s CIS-BP motif did not
overlap even at a p-value threshold of 10−2, we
assigned them a p-value of 1. The density of motif
match p-values at the L-mers that constitute the non-
canonical motif of ZNF784 shows that the L-mers do
not match any CIS-BP motif, and in about 20% cases,
the matches to the CIS-BP motifs are very weak (p-
value around 10−2) (Fig. 1a, left density plot). We also
found that in almost all oligos where this non-
canonical motif of ZNF784 occurs, it occurs alone as
opposed to co-occurring with CIS-BP motifs (Fig. 1a,
middle density plot). When ranked according to en-
richment, these L-mers fall in the top 5% among all
canonical and non-canonical L-mers (Fig. 1a, right
density plot).
As a second example, we show the ONECUT3 non-

canonical motif (Fig. 1b) that explains 6% of oligos in
the analyzed round of its HT-SELEX data. The dens-
ity plots in Fig. 1b show that, similar to the example
of ZNF784 non-canonical motif, the L-mers constitut-
ing ONECUT3 non-canonical motif either do not
match CIS-BP motifs or show very weak match (p-
value of around 10−2). We also quantified that in
~75% of oligos where this non-canonical motif oc-
curs, it occurs alone as opposed to co-occurring with
CIS-BP motifs. In terms of enrichment, these non-
canonical L-mers are ranked within the top 10% of all
L-mers.
Finally, we show a non-canonical motif of CEBPG

(Fig. 1c) that explains 5% of oligos in the analyzed
round of its HT-SELEX data. The density plots in
Fig. 1c show that, similar to the other two examples,
the L-mers constituting this non-canonical motif gen-
erally do not match CIS-BP motifs or show very weak
match (p-value of around 10−2). Also, these L-mers
occur mostly alone as opposed to co-occurring with
CIS-BP motifs, and they rank within the top 10% of
all L-mers. Together, these examples and the other
five motifs in the top category are strong evidence for
the presence of non-canonical motifs for a small sub-
set of well-studied TFs.
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Table 1 The three categories of non-canonical motifs. Shown are the non-canonical motifs discovered from Yang et al. data, the
corresponding validated motifs from Yin et al. data and the CIS-BP motifs
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Non-canonical motifs reveal new dimer-monomer
patterns, spacer sequences, and long yet specific flanking
sequences
The second category contains the remaining 11 non-
canonical motifs. These are less distinct from CIS-BP
motifs and could be marked as variations in
dimerization or flanking sequences, consistent with
current understanding of non-canonical motifs. Nine
of them are enriched in ChIP-seq data. Despite being
less unique from canonical motifs, these examples re-
veal novel binding mechanisms currently unknown
from CIS-BP motifs. We discuss the specific cases
below, all examples are shown in detail in Table 1
and Supplementary Table 1.

1. The non-canonical motifs of PAX7 (Paired Box 7)
and DBP (D-Box Binding PAR BZIP Transcription
Factor) suggest the TFs’ DNA-binding as mono-
mers, but the CIS-BP motifs represent their binding
as dimers (Fig. 2a). Also, the sequences flanking the
core in the monomer motif are distinct from those
in the CIS-BP motifs.

2. The case is opposite for SHOX2 (Short Stature
Homeobox 2) (Fig. 2b) and HOXC10 (Homeobox
protein C10), where the non-canonical motif repre-
sents the TF’s DNA-binding as a dimer, but the
CIS-BP motifs represent its binding as a monomer.

3. The non-canonical motif of CEBPG (CCAAT/en-
hancer-binding protein gamma) represents a differ-
ent dimerization pattern and a different spacer
sequence than those in its CIS-BP motif (Fig. 2c).
Note that these new dimerization patterns indicate
a flip in the 5′-to-3′ placement of the monomers;
they are not simply the reverse complements of the
CIS-BP motifs.

4. For ONECUT1 (One Cut Homeobox 1), the non-
canonical motif defines a shorter core motif than
the CIS-BP motifs, suggesting that some flanking
sequences in the CIS-BP motifs could be dispens-
able for its DNA binding in some contexts (Fig. 2d).

5. Finally, some non-canonical motifs share a TF-
family specific core sequence with the canonical
motifs, but show major differences in the flanking
sequences. For example, the non-canonical motif of

Fig. 1 Examples of distinct non-canonical motifs and the corresponding CIS-BP motifs for the TFs ZNF784 (a), ONECUT3 (b), and CEBPG (c). In
each panel, we also show three statistics related to the corresponding non-canonical motif (left to right): the distribution of p-values of CIS-BP
motif matches that overlap the constituent L-mers of the non-canonical motif, the distribution of the fraction of oligos where the constituent L-
mers occur alone, and the distribution of L-mer ranks according to enrichment. Motifs drawn with the program ceqlogo (MEME suite [32])
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SHOX (Short Stature Homeobox) shares the HOX
family specific “ATTA” sequence [25] with its CIS-
BP motif, but clearly differs in six of the 10 flanking
positions (Fig. 2e). The non-canonical motif of BSX
(Brain Specific Homeobox) presents a similar case
(Fig. 2f). This is important to note that the core se-
quences in our non-canonical motifs are often not
as long as the cases shown in a previous study [22].
In the previous study, the core sequence was ~8 nu-
cleotides long and the non-canonical motif differed
in ~4 flanking nucleotides. In our examples, how-
ever, we found that the core sequences are shorter
(~4 nucleotides) and the flanking sequences are
often longer.

Motifs enriched for multiple TFs
The third category includes nine motifs that are
enriched in the HT-SELEX data for two or more TF
families (Supplementary Text 3). This repeated occur-
rence is suggestive of a technical artifact in HT-SELEX.
However, all nine potential non-canonical motifs are
enriched in ChIP-seq data and pass our filtering criteria,
which are similar or more stringent that criteria used to

avoid HT-SELEX artifacts in previous studies [1, 35].
Nonetheless, we refer to these as potential non-
canonical motifs and treat them separately from the
nineteen non-canonical motifs (categories one and two)
in the following genomic analyses.

Non-canonical motifs explain in vivo ChIP-seq peaks
where canonical motifs are absent
We asked whether non-canonical motifs occur within
in vivo TF-occupied regions, particularly in the regions
where canonical motifs are absent but the data suggests
TF-occupancy. For each TF, we computed the fraction
of its ChIP-seq (Chromatin immunoprecipitation with
massively parallel DNA sequencing) peaks where its
non-canonical motifs occur alone, i.e., do not co-occur
with its canonical motifs. To this end, we collected hu-
man ChIP-seq datasets from the Cistrome Data Browser
[17, 38]. Fourteen TFs with motifs identified by our
pipeline have ChIP-seq data in Cistrome. This includes
seven TFs with non-canonical motifs (categories 1
and 2) and six TFs with potential non-canonical mo-
tifs (category 3). For each motif of a TF, we com-
puted the mean fraction of ChIP-seq peaks (across all

Fig. 2 Examples of Non-Canonical motifs and the corresponding CIS-BP motifs for the TFs PAX7, SHOX2, CEBPG, ONECUT1, SHOX and BSX. Similar
(alignable) regions of CIS-BP and non-canonical motifs are shown using dashed lines. For differences in monomers and dimers, the monomers
and dimers in the CIS-BP motifs are shown with gray underlines. Motifs drawn using the program ceqlogo (MEME suite [32])
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datasets; each TF has several ChIP-seq datasets in
Cistrome) where the non-canonical motif occurs
alone. As expected, the fractions of ChIP-peaks with
only non-canonical or potential non-canonical motif
occurrences are small compared to the peaks with ca-
nonical motif occurrence. However, these fractions
are positively correlated with the fraction of HT-
SELEX oligos where our motifs occur alone (Pearson
correlation coefficient = 0.41; Fig. 3a). For 7/14 TFs

(TCF4, ZNF784, KLF16, ZBTB49, ZNF740, POU3F2,
NKX3-1), our motifs are more abundant in ChIP-
peaks than they are in HT-SELEX oligos. For the
other TFs (HOXB2, ATF4, DBP, ETV4, SPDEF,
PDX1, and CEBPG), our motifs are more abundant in
HT-SELEX oligos than in ChIP-peaks. Overall, this
analysis suggests that non-canonical motifs are com-
mon in vivo and they often explain TF-occupied re-
gions where the canonical motif of the TF is absent.

Fig. 3 a Scatterplot showing the fractions of ChIP-seq peaks and the fractions of HT-SELEX oligo where a non-canonical motif occurs alone. The
fractions were averaged over all ChIP-seq datasets of the corresponding TF. Each data point corresponds to a non-canonical motif. Orange data
points correspond to potential non-canonical motifs with consensus sequences that are not family-specific (Supplementary Text 3). b Scatterplot
showing the fractions of non-canonical and canonical motif occurrences (within ChIP-peaks) that are regulatory. Each data point corresponds to a
2-tuple consisting of a TF and a Cistrome ChIP-seq dataset. Orange data points correspond to potential non-canonical motifs. c Same information
as shown in panel (b), but from promoter regions

Chumpitaz-Diaz et al. BMC Molecular and Cell Biology           (2021) 22:44 Page 6 of 14



Non-canonical motif occurrences mark binding sites with
potential regulatory function
We next asked if occurrences of our motifs within ChIP-
seq peaks could play any regulatory role. We include all
three categories of our motifs, with potential non-
canonical motifs analyzed separately from the other two
categories. For each of our motifs, we consider only
those occurrences that do not co-occur with a canonical
motif in the same ChIP-peak. We call a motif occur-
rence regulatory if it overlaps with an epigenetically
marked regulatory sequence. In particular, for each Cis-
trome ChIP-seq dataset, we collected the regulatory se-
quence annotations in the corresponding tissue- or cell-
type from Cao et al.’s recent study based on the EN-
CODE and Roadmap Epigenomics data [5, 6, 8, 27]. We
then computed the fractions of occurrences of our mo-
tifs that are regulatory in each dataset and compared this
to the corresponding fraction for canonical motifs of the
same TF (Methods, Fig. 3b). The fractions were gener-
ally similar, but in about half of the datasets, the
regulatory fractions of both types of motifs are very
low with one of them being zero. This is not a char-
acteristic of any particular TF or a type of motif. For
example, all occurrences of ATF4 non-canonical and
canonical motifs are regulatory in epithelial cell-lines,
but not in mesenchymal stem cells. On the other
hand, for TCF4, both types of motifs are regulatory
in dendritic and embryonic stem cells. However, in
colon cancer cells, only its canonical motif occur-
rences are regulatory. These results highlight the cell
type specificity of TF activity, which we detect with
both canonical and non-canonical motifs.
We next performed the same analysis on promoter

regions of the human genome (Fig. 3c). Interestingly,
for occurences of both our motifs and canonical mo-
tifs, the fractions are higher within promoter regions.
As noted above, we have focused here only on the
non-canonical motif occurrences within ChIP-peaks
where we did not find an occurrence for the TF’s ca-
nonical motif. This does not preclude the two types
of motifs to occur in the same promoter. Thus, we
asked how often the non-canonical and the canonical
motif occurrences are within the same promoter. The
Jaccard statistic between promoters with non-
canonical motif occurrences and those with canonical
motif occurrences was only 0.009 on average (range:
0–0.05; we considered only those datasets where at
least 10% of both types of motifs’ occurrences are in
the promoters), implying that non-canonical motif oc-
currences are nearly exclusive of canonical motif oc-
currences in the human promoters. Overall, this
analysis suggests that non-canonical motif occurrences
in the human genome may play a functional role in
transcriptional regulation.

Non-canonical and canonical motif occurrences in the
human genome are similarly conserved
We finally compared the evolutionary conservation of
non-canonical and canonical motif occurrences in the
human genome. We particularly focused on occurrences
of our motifs in ChIP-peaks (Cistrome dataset [17, 38])
where canonical motifs are absent. We compared the 7-
way (human and six vertebrates) phyloP scores [24] of
these motif occurrences against occurrences of the TF’s
canonical motifs (Methods). For the non-canonical mo-
tifs of eight of the 14 TFs mentioned above, the two
groups of motif occurrences have similar phyloP scores
in some or all ChIP-seq datasets (Supplementary
Table 2). Examples of such TFs include DBP, ATF4,
CEBPG, TCF4, NKX3-1, and ETV4. Overall, based on
the evidence of evolutionary conservation, this analysis
suggested that non-canonical motif occurrences of some
TFs carry functional importance in the human genome.

Discussion
Recent discoveries in TF-DNA binding specificity have
highlighted that TFs integrate several types of informa-
tion to identify their specific target sites [13, 30]. Some
discoveries have also questioned the common assump-
tion that a TF recognizes only a single sequence motif
[28]. Indeed, early quantitative studies of TF-DNA bind-
ing specificity had indicated that some TFs recognize
multiple distinct sequence motifs [3, 19], but later stud-
ies reported that such additional motifs are largely due a
TF’s ability to dimerize or due to variations in the se-
quences flanking a core region of its binding sites [14,
22]. Here we revisit this question utilizing a recent high-
quality HT-SELEX dataset of ~170 human TFs. Incorp-
orating a set of conservative filtering criteria with the
widely accepted strategies to model HT-SELEX data, we
found that 11% of the analyzed TFs indeed recognize
motifs that are significantly different from their currently
known “canonical” motifs. We call these motifs the
“non-canonical” motifs of these TFs. In the previous
studies, this question was discussed using the terms “pri-
mary” and “secondary” motifs. We chose the terms ca-
nonical and non-canonical since when we find more
than one secondary motif, there is no intuitive ranking
for those motifs as secondary, tertiary, etc.
The three conservative criteria that we introduced in

our pipeline (Methods) are meant to eliminate different
artifacts of HT-SELEX data that previous studies have
reported. For example, the filter on the minimum en-
tropy of di-nucleotide frequencies took care of poly-A or
poly-C sequences that can show spurious enrichment in
HT-SELEX data [23]. The criteria of round-over-round
enrichment ensures that our findings are based on se-
quences showing a consistent rise in enrichment. Finally,
when counting the fraction of oligos explained by a non-
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canonical motif, we only consider those oligos where the
non-canonical motif occurs alone. This eliminates the
possibility that the non-canonical motifs have “piggy-
backed” on the CIS-BP motifs by occuring in the same
oligos.
Besides the three main criteria mentioned above, we

also stipulated that the non-motif L-mers should be at
least as enriched as the motif L-mers (Methods),
whereas in principle, a non-canonical motif could be
rarer in HT-SELEX than the TF’s canonical motifs.
However, a sequence’s enrichment in HT-SELEX has
been found to correlate well with its affinity [26, 35].
Since it is important that the non-canonical motifs are
also plausible in terms of TF-DNA binding affinities, we
wanted to avoid those binding sites that show weaker af-
finity than the currently validated motifs. As such, we
chose to avoid rarer sequences. This is a conservative
approach that likely will miss some non-canonical mo-
tifs. But we can be confident that the non-canonical mo-
tifs we report are bound and likely functional.
Of note, since the HT-SELEX experiments were per-

formed on individual TFs, by design the experiments
preclude the possibility of co-factor binding affecting the
observed specificity signals. Nevertheless, it is useful to
distinguish the current study from Slattery et al.’s study
[29] showing cofactor binding influencing the canonical
DNA binding specificity of Hox Proteins. We note that,
Slattery et al. did not investigate the presence of non-
canonical motifs as an inherent property of a TF (i.e., in-
dependent of the presence of a binding partner). Rather,
their study established that the Hox proteins recognize
variants of the canonical motif by utilizing co-binding
with Exd (Extradenticle-Homothorax) to bind at differ-
ent genomic loci. As such, Slattery et al. did not report
motifs that are significantly different from canonical mo-
tifs. Also, Slattery et al. studied eight Hox proteins in
Drosophila; their analysis was not as large-scale as the
current study.
Yang et al.’s dataset [35] covers several TF families in-

cluding homeodomain, C2H2, ETS, bZIP, bHLH, and
Forkhead. However, the dataset mainly covers homeodo-
mains (95/169 TFs). We found that 13 of the 19 TFs dis-
cussed above are homeodomains. These 19 TFs also
include bHLH, bZIP, ETS, and C2H2 TFs, but the low
presence of these other families could stem from this
dataset’s non-uniform coverage. Forkhead TFs have been
discussed by Bulyk and colleagues [20, 28] for their abil-
ity to recognize multiple motifs. We found only two of
nine Forkhead TFs in this dataset have a non-canonical
motif, and those too belong to the cases where the non-
canonical motif appears to be similar across several dif-
ferent families (Supplementary Text 3, Table 1, Supple-
mentary Table 1). It is also worth mentioning that we
did not find a non-canonical motif for any of the 14

nuclear receptor factor TFs, suggesting that some TF
families may have a characteristic lack of non-canonical
motifs.
How can these non-canonical motifs be important if

they are generally less abundant than canonical motifs?
First, as we have shown, these motifs can explain many
in vivo TF-occupied regions where the TF’s canonical
motifs are absent. Secondly, in a tissue and cell-type spe-
cific manner, the occurrences of some of these non-
canonical motifs show as strong an evolutionary conser-
vation as the corresponding CIS-BP motifs. Finally, some
non-canonical motifs also explain the TF’s occupancy in
regulatory sequences. Altogether, we think non-
canonical motifs can play functional roles in vivo, and
hence, are important in order to gain a comprehensive
understanding of a TF’s functional role. Non-canonical
motifs are important also from the perspective of bio-
chemical mechanisms. A recent study on HOXB13 and
CDX2 [18] have shown that the two TFs recognize two
similar sequences (“CAATAAA” and “TCGTAAA”), yet
the recognition mechanisms are different in terms of
thermodynamics. Such differences in recognition mecha-
nisms may play a role in tissue and cell-type specificity
of a TF. As such, it is important to consider the entire
set of possible motifs for a TF.

Methods
Selection of HT-SELEX datasets and rounds
We analyzed the quality filtered datasets for 169 human
TFs released with Yang et al.’s recent study [35]. Yang
et al. resequenced these datasets from [14] at a signifi-
cantly higher depth (on average ~10-fold increase in
depth) and filtered through a quality-control pipeline
[35]. For each dataset, we analyzed the same HT-SELEX
round that Yang et al. selected based on a set of criteria
that maximize the presence of both strong and weak
sites for the corresponding TF.

CIS-BP motifs and finding CIS-BP motif matches
As the motifs, we chose every CIS-BP motif [33] that
was derived based on direct binding evidence. This
returned a median number of four motifs per TF (range:
1−17). For detecting motif matches, we used the FIMO
[10] program with the commonly adopted and relatively
liberal significance threshold of 1e-4 [7, 12, 15, 16, 21,
31, 34].

A pipeline to identify non-canonical motifs from HT-
SELEX data
To investigate the existence of non-canonical motifs and
their difference from canonical motifs, we developed a
pipeline for analyzing HT-SELEX data. We combine the
standard practices of HT-SELEX data modeling [29]
with an additional set of conservative filtering criteria
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(Fig. 4). The additional criteria aim to ensure that any
observed signal of non-canonical motifs is likely not an
artifact of the HT-SELEX procedure [23]. The following
is an outline of our pipeline; we describe the steps in de-
tail in the following sub-sections.
Step 1. The HT-SELEX experiment for a TF starts

with a library of random oligonucleotides (oligos), also
known as the round #0 library. From the TF-bound oli-
gos from the round #0 library, one then constructs the
round #1 library and repeats this process for several
rounds. Thus, each HT-SELEX round becomes more
enriched for oligos with specific sites for the TF [14].
Here we analyze the HT-SELEX libraries that Yang et al.
selected for each TF after applying a set of quality-
control criteria [35]. These criteria were to ensure that
the chosen rounds contained binding sites with an ex-
pected level of variation in the TFs’ DNA binding
affinity.
Step 2. Within the oligos of the selected round, we

identify the occurrences of the known motifs of the TF.
As the known motifs, we use every CIS-BP motif [33]
that is derived based on direct binding evidence in hu-
man. (In a post-analysis checking, we confirmed that the
discovered non-canonical motifs do not match with CIS-
BP motifs derived from indirect evidence.) We use the
program FIMO [10] to identify the occurrences of the
CIS-BP motifs in the oligos.
Step 3. Following the approach of Slattery et al.

[29], we compute the effective length (L) of the TF’s
binding sites. This is an information-theoretic ap-
proach to estimate the length of a TF’s DNA-binding
sites without making assumptions about its DNA-
binding properties.
Step 4. We perform an initial filtering on L-mers

based on the following two criteria. First, an L-mer
should occur at least 100 times (following [29]) in the

selected round’s oligos. Secondly, we computed the
entropy (based on dinucleotide frequency) of each L-
mer, and discarded all L-mers that have an entropy
lower than the minimum entropy of a CIS-BP motif
occurrence.
Step 5. We compute the enrichment of the remaining

L-mers in the selected round’s oligos with respect to
round #0 oligos. To estimate the count of an L-mer in
round #0, we build higher-order Markov models of the
round #0 oligos following Slattery et al.’s approach [29].
Step 6. We then identify the “motif L-mers” and “non-

motif L-mers”. An L-mer is a motif L-mer if it is a sub-
string or a superstring of a CIS-BP motif occurrence,
otherwise it is a non-motif L-mer. We discarded all
non-motif L-mers that fail to satisfy the following
three criteria. First, we discard all non-motif L-mers
that have an enrichment lower than the least enriched
motif L-mer. Secondly, for each non-motif L-mer, we
compute its “round-over-round enrichment”, i.e., the
ratio of its enrichment in each pair of successive
rounds. We discard a non-motif L-mer if its round-
over-round enrichment for any pair of successive
rounds is less than 1. Finally, we discard the non-
motif L-mers that always co-occur with motif L-mers
in the selected round’s oligos.
Step 7. We separately cluster the motif L-mers and the

non-motif L-mers into canonical and non-canonical mo-
tifs. To ensure the reliability of the clustering algorithm,
we confirm that the canonical motifs are similar to the
CIS-BP motifs of the corresponding TF. We discard
every non-canonical motif which does not occur alone
in at least 5% of the selected round’s oligos. When
counting the number of oligos where a non-canonical
motif occurs alone, we also ensure that the same oligo is
not counted more than once for different non-canonical
motifs.

Fig. 4 Flow diagram of the current analysis pipeline to identify non-canonical motifs. The pipeline combines the standard practices of HT-SELEX
data modeling [29] with an additional set of conservative filtering criteria to eliminate experimental and statistical artifacts (shown in red). These
criteria include selecting L-mers (sequences of length L) with a minimum count and a minimum di-nucleotide entropy, followed by selecting L-
mers that have a minimum enrichment, positive enrichment over successive rounds, and alone occurrence (i.e., occurrence independent of the
canonical motifs)

Chumpitaz-Diaz et al. BMC Molecular and Cell Biology           (2021) 22:44 Page 9 of 14



Step 8. For each canonical and non-canonical motif,
we compute its similarity score with the CIS-BP motifs.
Based on the similarity scores of the canonical motifs,
we then compute the empirical one-tailed p-values for
the similarity scores of the non-canonical motif. We
called a non-canonical motif as significantly different
from the CIS-BP motifs if this one-tailed p-value passed
the threshold corresponding to 5% FDR (false discovery
rate) correction [4].

Modeling k-mer frequencies in round #0 libraries
We followed Slattery et al.’s [29] Markov model based
procedure to model k-mer frequencies in round #0 of
the HT-SELEX datasets. For each round #0 library, we
first shuffled the order of the sequences and partitioned
those into two equal sized datasets for training and val-
idation. We then computed the optimal order of a Mar-
kov model for that library by fitting Markov models of
order between zero and an integer M on the training se-
quences, and comparing the model performance (coeffi-
cient of determination, R2) on the validation sequences.
To determine M, we identified the largest value of k
such that every k-mer “occurs” at least 100 times in the
library, and we set M = k − 1. We say that a k-mer occurs
in a DNA sequence if the sequence has a k-length sub-
string (either in the forward or the reverse complement
direction) exactly matching the k-mer. Across the data-
sets, the median value of M was 6 (range: 5−8), the me-
dian value of optimal orders was 5 (range: 4−7), and the
median R2 values of the optimal models was 0.94 (range:
0.76−0.99).

Computing the effective length (L) of TF binding sites
We followed Slattery et al.’s [29] procedure to identify
the effective site length (L) of a TF from its selected
round’s library sequences. According to Slattery et al.,
for the effective site length L, the distribution of L-
mer frequencies in the selected round should be max-
imally distant from the distribution of L-mer frequen-
cies in round #0. Thus, for each value of k between
m + 1 and 15, where m is the optimal order of Mar-
kov model for the corresponding round #0 library, we
computed the KL divergence DKL between the distri-
butions of k-mer frequencies in the selected round
and round #0 (to compute the k-mer frequencies in
round #0, we used the Markov models computed
above). We then set L equal to the value of k for
which the above KL divergence was the maximum.
Like Slattery et al., we took the frequencies of all k-
mers that occur at least 100 times in the selected
round and considered all other k-mers as one com-
bined group. Thus, we computed the above KL diver-
gence DKL as follows.

DKL ¼
X

w∈S100
PR wð Þ log PR wð Þ

P0 wð Þ þ QR wð Þ log QR wð Þ
Q0 wð Þ ;

where:
S100 is the set of all k-mers that occur at least 100

times in the selected round R,
PR(w) and P0(w) are the frequencies of the k-mer w in

rounds #R and #0 respectively, and QRðwÞ ¼ 1−
P

w∈S100

PRðwÞ and Q0ðwÞ ¼ 1−
P

w∈S100 P0ðwÞ.

Initial filtering of L-mers from the library of the selected
round
From the sequences (oligos) of the selected round’s li-
brary, we removed every L-mer if it failed in either of
the following two criteria.

1. Minimum count: we eliminate an L-mer if it occurs
less than 100 times in the library sequences

2. Minimum di-nucleotide based entropy: we first
computed the minimum di-nucleotide based en-
tropy of all matches to the TF’s CIS-BP motif, and
we eliminate an L-mer if its di-nucleotide based en-
tropy is less than the minimum of that computed
from the CIS-BP motifs. We defined the di-
nucleotide based entropy for a given sequence as
follows.

H ¼
X

k∈S2
pk log

1
pk

� �
;

where:
S2 is the set of all di-nucleotides, i.e., {AA, AC, AG,

AT, …, TG, TT}, and
pk is the frequency of the k-th di-nucleotide in that

sequence.

Identifying motif L-mers and non-motif L-mers
We then rank all L-mers in the selected round’s library
according to their enrichment with respect to round #0
library. We defined the enrichment of an L-mer w as
PRðwÞ
P0ðwÞ , where PR(w) and P0(w) are the frequencies of the

k-mer w in rounds #R (the selected round) and #0
respectively.
We then mark every L-mer that is as either a substring

or a superstring of the TF’s CIS-BP motif matches, and
call these the “motif L-mers”. We identify the lowest
ranked motif L-mer and discard every lower-ranked L-
mers. From the remaining L-mers, we call an L-mer to
be a “non-motif L-mer” if it is not a motif L-mer.
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Filtering non-motif L-mers based on round-over-round
(RoR) enrichment and alone occurrence
We further filtered non-motif L-mers based on the fol-
lowing two criteria.

1. Round-over-Round enrichment is at least one: for
each non-motif L-mer, we computed its enrichment
between every pair of consecutive rounds (Round-
over-Round, RoR enrichment). We discarded a
non-motif L-mer if its RoR enrichment between any
pair of consecutive rounds was < 1.

2. Alone occurrence: we discard a non-motif L-mer if
it never occurs “alone” in the selected round’s se-
quences, i.e., if it occurs with some motif L-mer in
all oligos.

Clustering L-mers into canonical and non-canonical motifs
We take the filtered lists of motif L-mers and non-motif
L-mers, and cluster the L-mers into canonical and non-
canonical motifs. The key idea is to iteratively identify a
cluster head (defined below) and cluster all the L-mers
that: (a) have not been assigned to any other cluster yet
and (b) are covered by the current cluster head (defined
below).
A cluster head is an l-mer (we chose l = 8; if L < 8, then

we chose l = L − 2) that occurs in the maximum number
of L-mers with up to m = 2 mismatches (we use m = 1 if
l ≤ 5). These choices were adopted from previous string-
kernel based support vector machine models of TF bind-
ing specificity [2]. We say that a cluster head covers an
L-mer if it occurs in the L-mer with up to m mis-
matches. Intuitively, a cluster head identifies a core re-
gion within the L-mers that it covers. After we cluster
the L-mers covered by the current cluster head, we iden-
tify a new cluster head for the remaining L-mers and re-
peat the same process. We continue this iterative
process until every L-mer has been assigned to a cluster
or we have identified a maximum number of clusters
(we set the limit at five).
We next align the L-mers in every cluster. We identify

the position within each L-mer where the cluster head
occurs with the fewest number of mismatches. We call
these positions the anchor positions for alignment. If
there are more than one anchor position for an L-mer,
we choose the one that is closest to the middle position
of the L-mer. We then align the L-mers along the an-
chor positions, and pad each L-mer with ‘N’s to make
sure that all L-mers in the alignment have the same
length. Of note, we always count mismatches by consid-
ering l-mers in both the forward and the reverse com-
plement orientation.
From these alignments, we finally create the position

weight matrices or motifs by counting the number of oc-
currences of each nucleotide at each position of the

alignment. An ‘N’ at a position of an L-mer contributes
a count of 0.25 to each nucleotide at that position.
We visually confirmed each canonical motif con-

structed from the above process and confirmed their
similarity with the CIS-BP motifs of the same TF (Sup-
plementary Table 1).
It is useful here to mention a final point about the

non-canonical motifs constructed in the above process.
At any stage during cluster construction, if we find mul-
tiple cluster heads (i.e., each of them covers the same
number of L-mers), then we execute the above process
independently for each cluster head. In such cases, the
same L-mer will be assigned to more than one cluster
and thus, will contribute to more than one motif. It is
not clear how this may influence our downstream ana-
lyses. Therefore, after performing multiple test correc-
tions on the non-canonical motifs (see below), we
manually check if there is any pair of significant non-
canonical motifs that includes the same L-mer and keep
the motif that is more different from the CIS-BP motifs
(see below). Thus, in our results, an L-mer never occurs
more than once in the non-canonical motifs.

Selecting non-canonical motifs based on fraction of
Oligos explained
We say that a motif (canonical or non-canonical) of a
TF occurs in a sequence (an oligo or a ChIP-Seq peak) if
any of its constituent L-mers occur in the sequence.
When a non-canonical motif of a TF occurs in a se-
quence, but none of the canonical motifs of the TF oc-
curs in that sequence, we say that the non-canonical
motif occurs alone in that sequence. We eliminate a
non-canonical motif if it does not occur alone in at least
5% of the selected round’s oligos.

Statistical significance of non-canonical motifs
For each canonical and non-canonical motif of a TF, we
first computed its minimum distance Dmin from the col-
lection of CIS-BP motifs of the same TF. To compute
the distance D between two motifs, we first trim the mo-
tifs by eliminating non-informative positions (informa-
tion content less than 0.25 bits) from the two ends.
Then we consider the every possible l-length sub-motifs
(see below) of the two trimmed motifs, compute their
Euclidean distances normalized by l, and report the
minimum of these normalized distances as D. We chose
l = 8 or set l = the length of the smaller motif if its
length is smaller than 8. As we did for cluster heads
above, the l-length sub-motifs capture the similarity be-
tween the two motifs in a core region. While computing
the Euclidean distances, we always consider one of the
motifs in both forward and reverse complement orienta-
tion, and take the smaller of the two distances.
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Next, we compute the statistical significance of the
Dmin value of each non-canonical motif by computing a
p-value using a normal distribution with mean and vari-
ances computed from the Dmin values of the canonical
motifs. We report this p-value as the statistical signifi-
cance of the non-canonical motif.
Finally, we reported the non-canonical motifs that pass

a 5% false discovery rate threshold in Benjamini-
Hochberg procedure [4].

ChIP-Seq and regulatory sequence data
We collected the ChIP-Seq data from Cistrome DB [17,
38] (Batch download for Human_Factor) and regu-
latory sequence annotations based on ENCODE [6, 8]
and Roadmap Epigenomics [27] from Cao et al.’s [5] re-
cent study. For promoters, we downloaded from UCSC
[11] the sequences 1000 bases upstream of annotated
transcription starts of RefSeq genes with annotated 5′
UTRs.

Computational validation: enrichment of non-canonical
motifs in ChIP-seq data
We computed the enrichment of non-canonical and ca-
nonical motifs in Cistrome ChIP-seq data using the fol-
lowing three control data: (i) shuffled versions of L-mers
constituting the motifs, (ii) dinucleotide shuffled versions
of ChIP-peaks, and (iii) randomly selected genomic se-
quences matched for length, GC-content, and repeat
content (using gkmSVM [9]).
For the first analysis, for a given motif and a ChIP-seq

dataset, we define the enrichment e(m) of a motif m as
follows.

e mð Þ ¼ 1
Dj j

X

d∈D

1
Lj j
X

l∈L

n l; dð Þ
n l0; dð Þ

where,
D is the set of ChIP-seq datasets of the corresponding

TF,
L is the set of L-mers constituting the motif,
l′ is the shuffled sequence of a constituent L-mer l of

the motif m,
n(l, d) and n(l′, d) are the number of times l and l′

occur in the ChIP-peaks of a dataset d, respectively.
In other words, for each motif, we first take the mean

ratio of the number of times its constituent L-mers and
their shuffled sequences occur in the ChIP-peaks (we
considered a pseudocount of 1). Then, we take the mean
of the above statistic over all datasets of the correspond-
ing TF.
For the other two analyses, for a given motif and a

ChIP-seq dataset, we define the enrichment e(m) of a
motif m as follows.

e mð Þ ¼ 1
Dj j

X

d∈D

1
Lj j
X

l∈L

n l; dð Þ
n l;Cð Þ

where,
D is the set of ChIP-seq datasets of the corresponding

TF,
L is the set of L-mers constituting the motif,
n(l, d) and n(l,C) are the number of times an L-mer l

occurs in the ChIP-peaks of a dataset d and the corre-
sponding control dataset C, respectively.
In other words, for each motif, we first take the mean

ratio of the number of times its constituent L-mers
occur in the ChIP-peaks compared to the control se-
quences (we considered a pseudocount of 1). Then, we
take the mean of the above statistic over all datasets of
the corresponding TF.
We show the results in Supplementary Figure 1 and

discuss in Supplementary Text 2. To make the compari-
sons clear between non-canonical and canonical motifs,
we have plotted the e(m) value of each non-canonical
motif against the mean e(m) value of all canonical motifs
of that TF.

Computational validation: checking for the existence of
non-canonical motifs in a separate HT-SELEX data
As a second computational validation, we analyzed the
HT-SELEX dataset of Yin et al. [36]. This dataset in-
cludes DNA-binding data of full-length TFs and ex-
tended DNA binding domains for 28 of the 31 TFs that
have non-canonical motifs in the Yang et al. dataset
[35]. For each non-canonical motif, we computed its
constituent L-mers’ enrichments in the HT-SELEX
round that Yin et al. used to derive motifs compared to
the first round of that dataset. We eliminated all L-mers
with enrichment less than 1, and applied our clustering
algorithms discussed above. We then scrutinized the
resulting motifs for similarity with the non-canonical
motifs discovered from Yang et al. data [35].

Evolutionary conservation analysis
For each TF, we compared the 7-way (human and six
vertebrates) phyloP scores [24] between its canonical
and non-canonical motif occurrences within its ChIP-
Seq peaks (Cistrome datasets [17, 38]). For non-
canonical motif occurrences, we count only the occur-
rences within peaks that lack occurrences of the TF’s ca-
nonical motifs. For each matching sequence in these two
groups, we computed its mean phyloP score from the
basewise scores and performed a two sample
Kolmogorov-Smirnov test on the two groups. We then
computed the fraction of datasets per non-canonical
motif where the two groups do not have a significantly
different level of phyloP scores (two sample KS test p-
value > 0.01).
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