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Abstract

Background: Research on cell-in-cell (CIC) phenomena, including entosis, emperipolesis and cannibalism, and their
biological implications has increased in recent years. Homotypic and heterotypic engulfment of various target cells
by numerous types of host cells has been studied in vitro and in tissue sections. This work has identified proteins
involved in the mechanism and uncovered evidence for CIC as a potential histopathologic predictive and
prognostic marker in cancer. Our experimental study focused on non-professional phagocytosis of leukocytes.

Results: We studied the engulfment of peripheral blood mononuclear cells isolated from healthy donors by
counting CIC structures. Two non-tumorigenic cell lines (BEAS-2B, SBLF-9) and two tumour cell lines (BxPC3, ICNI)
served as host cells. Immune cells were live-stained and either directly co-incubated or treated with irradiation or
with conventional or microwave hyperthermia. Prior to co-incubation, we determined leukocyte viability for each
batch via Annexin V-FITC/propidium iodide staining.
All host cells engulfed their targets, with uptake rates ranging from 1.0% ± 0.5% in BxPC3 to 8.1% ± 5.0% in BEAS-2B.
Engulfment rates of the cancer cell lines BxPC3 and ICNI (1.6% ± 0.2%) were similar to those of the primary
fibroblasts SBLF-9 (1.4% ± 0.2%). We found a significant negative correlation between leukocyte viability and cell-in-
cell formation rates. The engulfment rate rose when we increased the dose of radiotherapy and prolonged the
impact time. Further, microwave hyperthermia induced higher leukocyte uptake than conventional hyperthermia.
Using fluorescent immunocytochemistry to descriptively study the proteins involved, we detected ring-like
formations of diverse proteins around the leukocytes, consisting, among others, of α-tubulin, integrin, myosin, F-
actin, and vinculin. These results suggest the involvement of actomyosin contraction, cell-cell adhesion, and the α-
tubulin cytoskeleton in the engulfment process.

Conclusions: Both non-tumorigenic and cancer cells can form heterotypic CIC structures by engulfing leukocytes.
Decreased viability and changes caused by microwave and X-ray irradiation trigger non-professional phagocytosis.
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Background
In recent years, a field of science has grown up around a
phenomenon long known of, but previously largely
overlooked: cell-in-cell (CIC) structures. The term refers
to a phenomenon whereby one cell is inside another [1]
as a result of non-professional phagocytosis [2]. Cell-in-
cell structures can arise from the interactions of cells of
the same cell type (homotypic CIC) or different cell
types (heterotypic CIC). Entosis, emperipolesis and can-
nibalism are three manifestations of this phenomenon,
each of which features differences in the formation
mechanisms and biological impact of cell-in-cell struc-
tures [1].
Entosis is the homotypic active invasion of one cell

into another. In addition to cell-cell adhesion, entosis
requires a contractile force [3] and a connecting sensor
to trigger the uptake [4]. The engulfment of living
leukocytes by other cells is called emperipolesis [5].
Cannibalism is defined as the ability of a cancer cell to
engulf living or dead cells or even amorphous material
[1]. A complex set of factors, pertaining both to the host
cell and to the engulfed cell, regulates all three of these
phenomena [6]. Actomyosin cytoskeleton rearrangements,
cell-cell adhesion and a mechanosensitive interfacing ring
[4] are some of the key players in non-professional phago-
cytosis [1, 4, 7, 8].
Cell-in-cell structures are part of physiological pro-

cesses, such as cell maturation [7, 9] tissue development
[10] and homeostasis [11], and also occur in pathological
processes, namely inflammation [12] and tumour forma-
tion [9, 11, 13]. Identifying and understanding the
biological effects of cell-in-cell structures in cancer has
become a focal area of research.
Non-professional phagocytosis can generate distinctly

divergent, indeed opposing effects in the emergence of
tumours. It can support tumour development and pro-
gression, serving to supply nutrients and giving the host
a survival advantage [1, 6, 14, 15]. The invasion of one
cell into another can lead to multinucleation, promoting
aneuploidy and malignant degeneration [11, 13]. The
formation of cell-in-cell structures also acts as a selec-
tion mechanism for the most malignant clones, as they
are more potent phagocytes than are less malignant
clones [16]. Further, tumour cells establish an immune
escape mechanism by engulfing targeting immune cells
[11, 15, 17]. This alters the tumour microenvironment
[13]. However, non-professional phagocytosis also fulfils
a tumour-suppressive role. It can clear aberrant cells
from tissues and thereby prevent aneuploidy and cancer-
ous degeneration [8, 18]. It can also prevent the forma-
tion of metastases by clearance of matrix-detached cells
[15]. Additionally, incorporated immune cells can cause
host cell death through cytotoxic effects released inside
the host cell [9, 19].

Notwithstanding this ambiguity in the biological im-
pact of cell-in-cell structures, Fais and Overholtzer have
declared them a “hallmark of cancer” [1]. Studies on
cell-in-cell structures in various tumours point to CIC as
a potential histopathologic predictive or prognostic
marker for cancer [20–27].
Against this backdrop, our experimental study aimed

to shed light on the role of leukocytes in non-
professional phagocytosis. Due to the assertion that non-
professional phagocytosis is a characteristic of malignant
clones [1, 13, 14, 28], we focussed on leukocyte inter-
action with both non-tumorigenic and tumour tissue
cells in vitro to determine differences between malignant
and non-malignant cells. In addition, our study sought
to establish whether engulfment differs in accordance
with the viability of target cells. This study uses the term
“leukocytes” as a synonym for isolated peripheral blood
mononuclear cells (PBMC).

Results
Non-tumorigenic tissue and cancer cell lines have the
capacity to engulf leukocytes
Recent experiments run in our laboratory found that
dead target cells resulted in a higher rate of homotypic
non-professional phagocytosis [29]. Assuming heterotypic
non-professional phagocytosis has similar properties, we
initially used leukocytes exposed to 56 °C hyperthermia as
target cells.
All recipient cell lines studied were able to engulf

hyperthermia-treated leukocytes. However, they showed
differing capacities for engulfment. CIC rates ranged
from 8.1% ± 5.0% in the immortalised human lung epi-
thelial cell line BEAS-2B to 1.0% ± 0.5% in the human
primary pancreatic adenocarcinoma cell line BxPC3. The
engulfment capacity of BEAS-2B was significantly higher
than the capacity of BxPC3 (p = 0.005). The cancer cell
lines BxPC3 and ICNI (1.6% ± 0.2%) engulfed the leuko-
cytes at a similar rate as did the human primary fibro-
blasts SBLF-9 (1.4% ± 0.2%) (Fig. 1 and Table 1).
As we had obtained low CIC rates for SBLF-9, BxPC3

and ICNI, we decided to perform further experiments
with BEAS-2B as host cells. We hoped these experi-
ments would enable us to determine differences between
treatments applied previous to co-incubation.

Inverse correlation between CIC rate and leukocyte
viability
Living leukocytes were co-incubated with BEAS-2B for
12 h, 24 h, 36 h or 48 h. The viability of the leukocytes
declined from 90.0% ± 2.2% at 12 h to 81.3% ± 3.5% at
48 h (Fig. 2A), which implies that the vital leukocytes
died over time at a certain rate (Fig. 2B). However, the
CIC rate varied only marginally over time (Fig. 2C).
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Overall, we found significant positive correlations be-
tween CIC rates and both apoptotic (p = 0.021, Fig. 2D)
and necrotic rates (p < 0.001, Fig. 2E), as well as a signifi-
cant negative correlation between CIC rates and viability
(p < 0.001, Fig. 2F). It appears, therefore, that dying and
dead leukocytes are more susceptible to targeting by
non-professional phagocytosis.

CIC rate depends on irradiation dose and impact time
We tested various treatments prior to co-incubation in
order to determine whether the cause of cell death im-
pacts engulfment. The leukocytes were irradiated with
0.5Gy, 1Gy, 2Gy or 5Gy, then incubated for 18 h and 36
h to ensure that the damage caused by irradiation could
progress prior to co-incubation [30, 31]. The viability of
untreated leukocytes after 18 h or 36 h respectively
served as negative controls. As the engulfment rate of

untreated leukocytes remained mostly constant from 4 h
(neg. Control Fig. 4A) to 48 h (Fig. 2C), we did not per-
form additional negative control experiments for CIC
rates at 18 h. With an increasing dose of irradiation, the
leukocytes’ viability rate decreased, while apoptotic and
necrotic rates increased. Death rates also rose with la-
tency, as cells had more time to undergo apoptosis as a
response to irradiation damage (Fig. 3A). After an im-
pact time of 18 h, the CIC rate varied only marginally,
whereas it increased in line with irradiation dose after an
impact time of 36 h (Fig. 3B). This means that no correl-
ation between CIC rate and death rate was observed
after an impact time of 18 h (p = 0.375, Fig. 3C), but after
an impact time of 36 h, a significant positive correlation
between CIC rate and death rate emerged (p = 0.042,
Fig. 3D).

Microwave irradiation increases both death rate and CIC
rate
A number of research groups have found non-thermal
effects of microwave irradiation on cells [32–34]. We in-
vestigated whether these effects also manifested in non-
professional phagocytosis of leukocytes. The leukocytes

Fig. 1 Non-professional uptake of leukocytes into different host cells lines. Heated (56 °C, 40 min) leukocytes are co-incubated for 4 h with
adherent epithelial lung cells (BEAS-2B), primary human fibroblasts (SBLF-9), pancreatic cancer cells (BxPC3) and melanoma cells (ICNI). The
leukocytes have been isolated from whole blood residues from platelet donations and from EDTA tubes from healthy blood donors. A Kruskal-
Wallis test detects a significant difference between the phagocytic capacities of BEAS-2B and BxPC3 (p = 0.005)

Table 1 Heterotypic engulfment capacity of each cell line

BEAS-2B SBLF-9 BxPC3 ICNI

Mean 8.1% 1.4% 1.0% 1.6%

Standard deviation 5.0% 0.2% 0.5% 0.2%
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were exposed to 44 °C, generated either by micro-
wave irradiation or water bath, for a period of 1 h.
Viability and CIC rates after 4 h of co-incubation
were compared. Viability and CIC rates of untreated
leukocytes at the same points in time served as nega-
tive controls. Overall death rates induced by conven-
tional hyperthermia and microwave hyperthermia did
not differ significantly (Fig. 4A). However, differences

did appear between apoptosis and necrosis rates.
Conventional hyperthermia resulted in around twice
as much apoptosis as necrosis. By contrast, micro-
wave irradiation led to nearly 5 times more necrosis
than apoptosis. The CIC rates were 2.12% ± 1.26%
after microwave irradiation and 0.70% ± 0.33% after
treatment with conventional hyperthermia (Fig. 4B).
This difference was not significant.

Fig. 2 Cell-in-cell (CIC) rates are positively associated with apoptosis and necrosis and negatively with viability. A Viability of live-stained peripheral
blood mononuclear cells (PBMC) co-incubated for 12 h to 48 h with BEAS-2B as host cells. B Linear regression of the death rate of PBMC over co-
incubation time. C CIC rate over co-incubation time. Correlation of (D) apoptosis and (E) necrosis rates and (F) viability with CIC rates
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Various proteins form a ring-like structure around the
leukocyte during and after engulfment
Detection of proteins involved in cell-in-cell formation
proceeded via immunofluorescence microscopy. We
used PBMC as target cells and BEAS-2B as host cells,
and analysed cytoskeletal proteins and proteins involved
in cell-cell adhesion. In α-tubulin staining, a ring formed
around the leukocyte during every stage of the uptake
(Fig. 5B). This ring was connected to extensions of the
α-tubulin cytoskeleton of the engulfing cell (Fig. 5C).
The internalising cell seemed to pull in the leukocyte from
the opposite pole of the nucleus. The ring-like α-tubulin
condensation around the leukocyte remained visible after
engulfment was complete (Fig. 5D). An X-Y-Z scan image
illustrates the complete engulfment of a leukocyte by an
α-tubulin-stained BEAS-2B cell (Fig. 5E).
Further, β-integrin formed a ring around the leukocyte

during engulfment, with agglomeration at the contact
side (Fig. 6). Similar ring-like protein condensations
were observed in β-catenin, p-ezrin, FAT, fibronectin
and vinculin staining (Fig. 6).
As the F-actin cytoskeleton and myosin cytoskeleton

are key players in professional phagocytosis, we also

studied these proteins (Fig. 7). Both formed a ring-like
structure around the leukocyte, like the ones described
above. Further, a slight connection to the actomyosin
cytoskeleton of the outer cell was occasionally visible.
However, we did not observe the pseudopods of the
actin cytoskeleton that are typical of professional
phagocytosis.

Discussion
The cancer cell lines used in this study formed CIC
structures by engulfing leukocytes, thus exhibiting
behaviour consistent with that found by other authors
[14, 17, 19, 26, 27, 35]. The non-tumorigenic cell lines
SBLF-9 and BEAS-2B also engulfed leukocytes under
normal cell culture conditions. In line with the findings
of previous work [14, 28], primary human melanoma
cells did not exhibit high phagocytic potential in this
study. Their CIC rate did not differ from the CIC rate of
human primary skin fibroblasts. It therefore appears that
malignant transformation alone is insufficient to increase
the phagocytic capacity of skin cells. In accordance with
the findings of He et al. [36], we assume that differences
in host tumour cell biology play a role in leukocyte-

Fig. 3 Effect of irradiation and its impact time on leukocyte uptake. Leukocytes are irradiated and incubated for 18 h or 36 h to allow radiation
damage to occur. They are then co-incubated for 4 h with BEAS-2B as host cells. Untreated leukocytes serve as negative controls. A Proportion of dead
cells by dose and time. B Cell-in-cell (CIC) rates by dose and time. Correlation of death rates and CIC rates after impact times of C 18 h and (D) 36 h
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tumour cell interaction and may explain the observed
differences in phagocytic capacities.
As the BEAS-2B host cells engulfed live as well as apop-

totic and necrotic leukocytes, our experimental setting
most likely resembles the phenomenon called “cannibal-
ism”. In a similar way to the BEAS-2B host cells, cannibal-
istic cancer cells do not discriminate between living and
dead cells and even engulf amorphous material [1, 28, 37];
this notwithstanding, in our experiments dead cells were
more likely to be targets of engulfment. As the dead cells
lay motionless on the host cell layers, they may have sunk
into the host cells, in a manner similar to the description
of cancer cell cannibalism by Stefano Fais [37]. The fact
that living cells retain their movement may explain the
higher engulfment rates for dead cells.
Besides a decrease in viability, the CIC rate also

depended on other factors. After X-ray and microwave
irradiation, leukocyte engulfment rates were comparable
at similar death rates. Untreated leukocytes and those
exposed to hyperthermia in a water bath were much less
frequently engulfed than irradiated leukocytes at similar
death rates. It appears, then, that non-thermal effects of
microwave irradiation [32–34] and cellular effects and
changes caused by X-ray irradiation also trigger
leukocyte engulfment.
Although the mechanism behind our experimental set-

ting predominantly resembles cannibalism, the changes
we observed at protein level also show parallels to

entosis. In what follows, we will therefore review our
findings in the light of the various mechanisms of uptake
described in the literature.
As shown by Xia et al., microtubules are important for

entosis and disturbing them will disrupt cell-in-cell for-
mation [38]. In the present study, we also observed
structural changes of α-tubulin during cell-in-cell forma-
tion. The α-tubulin cytoskeleton deformed around the
leukocyte or appeared to “pull it in”. Our findings there-
fore indicate involvement of the microtubule cytoskel-
eton in the process of non-professional phagocytosis.
Alongside its role in cellular plasticity, the microtubule

cytoskeleton affects the stiffness of the cell, as does the
actomyosin cytoskeleton [16, 38–40]. Actomyosin is
concentrated inside the internalised cell, particularly op-
posite the adhesion contacts, and represents the con-
tractile force responsible for invasion of the host cell
[16, 39]. Fluorescent immunocytochemistry has consist-
ently revealed actomyosin enhancement at the cell mem-
brane of the leukocyte. As a large number of leukocytes
in our experiments were necrotic, we assume that an ac-
tive invasion process, as occurs in entosis [3], is improb-
able here. This notwithstanding, the stiffness of the
leukocytes may be increased, possibly by passive myosin
enhancement, which may have precipitated engulfment
of that leukocyte.
Research has proposed that adherens junctions act as

sensors of cellular stiffness in cell-in-cell formation,

Fig. 4 Comparison of conventional and microwave hyperthermia. Leukocytes are exposed to conventional hyperthermia via water bath or
microwave hyperthermia at 44 °C for 1 h. Leukocytes not exposed to hyperthermia are the negative control. A Cell death rates and B CIC rates
are determined after 4 h of co-incubation
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Fig. 5 (See legend on next page.)
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(See figure on previous page.)
Fig. 5 Role of α-tubulin in leukocyte uptake. α-Tubulin is stained using a specific primary antibody and Alexa Fluor 488 secondary antibody. CyTRAK
orange is the live dye used to stain peripheral blood mononuclear cells before co-incubation with BEAS-2B as host cells. The nuclei are stained with
DAPI. The figure displays several stages of engulfment of leukocytes by BEAS-2B, as a representative sample of > 150 CIC structures analysed: A α-
tubulin cytoskeleton of a BEAS-2B host cell and a leukocyte before internalisation. B Establishment of a link between target and host cell; arrow marks
ring-like condensation around leukocyte. C Host cell nucleus deformation; arrow demonstrates connection between α-tubulin ring and cytoskeleton of
recipient cell. D Complete engulfment of the leukocyte by a BEAS-2B cell; arrow indicates ring-like structure still present around engulfed leukocyte. E
Merged X-Y-Z scan of a representative cell-in-cell structure shows complete engulfment of leukocyte. Scale bars indicate 10 μm

Fig. 6 Ring-like structures surrounding ingested leukocytes are formed by many different proteins. All images result from co-incubation of
peripheral blood mononuclear cells with BEAS-2B as host cells for 4 h. They are representative of > 150 CIC structures analysed. The images depict
β-catenin, p-ezrin, FAT, fibronectin, β-integrin and vinculin staining. The proteins are targeted by specific primary antibodies and all stained with
Alexa Fluor 488 secondary antibodies. Leukocytes were live stained with CyTRAK orange before co-incubation. DAPI is used to stain the nuclei.
Scale bars indicate 10 μm. Arrows indicate ring-like structures
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thereby mediating entosis [8]. Vinculin is one of the
linkers between adherens junctions and the actomyosin
cytoskeleton [4, 8]. In our experiments, vinculin was
condensed around the internalised leukocyte in a ring-
like structure. This ring may be a two-dimensional
representation of the mechanosensitive formation of vin-
culin with other proteins described by Wang et al.,
which is required for leukocyte engulfment [4]. One of
the proteins involved could be β-catenin, as it was dis-
tributed in a similar manner to vinculin both in Wang
et al. [4] and in our experiments. However, the ring-like
β-catenin formation around the leukocytes could also in-
dicate that the leukocytes reside inside a vacuole formed
by the cell membrane of the engulfing cells [19].
Various integrins mediate cell-cell adhesions, for ex-

ample in leukocyte transcytosis [41, 42], or in epithelial
to mesenchymal transition, a prerequisite for cancer cell
invasion and metastasis formation [43]. Sexton et al.
demonstrated that integrins participate in the detection
of apoptotic leukocytes, which leads to their engulfment
[44]. They also described an integrin enhancement
around the target cell [44]. In our experiments, β-
integrin was condensed at the contact sides between the
target and host cell at an early stage of the engulfment.
Once the leukocyte was completely engulfed, the β-

integrin formed a ring-like structure around it. This may
indicate the formation of focal adhesions [43, 44] prior
to engulfment as means of cell-cell contact.
Fibronectin is one of the proteins that interact with

integrins [45]. It is involved in cell-matrix attachment,
cell-cell adhesion [45, 46] and phagocytosis, especially of
bacteria [47]. In our experiments, fibronectin formed
ring-like structures around the leukocytes, suggesting it
could be displayed at their surface [46]. This display may
have been triggered by hyperthermia treatment or
similar stress factors, resulting in a form of leukocyte
activation [46] prior to cell death. This could mediate
non-professional phagocytosis via interaction with host
cell integrins.
The actin cytoskeleton’s linker protein, ezrin, also

takes part in non-professional phagocytosis [28, 35]. It is
distributed around the internalised particle [28]; in our
case it formed a ring-like structure around the leuko-
cytes. The inhibition of ezrin greatly impairs the phago-
cytic capacity of tumour cells [28, 35]. Our findings
suggest that ezrin is part of the regulatory mechanisms
of non-professional phagocytosis by non-tumorigenic
cells. We would recommend that future studies in this
area focus on differences in ezrin levels and ezrin’s phos-
phorylation in cells with high versus low phagocytic

Fig. 7 Actomyosin distribution during non-professional phagocytosis. Peripheral blood mononuclear cells are stained with CyTRAK orange before
co-incubation with BEAS-2B for 4 h. Nuclei are stained using DAPI. A Myosin staining is performed using a secondary antibody coupled with
Alexa Fluor 488. B Actin is visualised using phalloidin. The images shown here are representative of > 150 CIC structures analysed. C Merged X-Y-
Z scan of myosin-stained cell-in-cell structure to demonstrate the complete engulfment of the leukocyte. Scale bars indicate 10 μm. Arrowheads
indicate ring-like structures; arrows indicate interactions with the cytoskeleton of the engulfing cell
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capacity, as phosphorylation patterns may potentially
explain the disparity [28].
Another protein involved in the regulation of actin

cytoskeleton transitions is FAT1 [48]. This is a trans-
membrane protein from the cadherin superfamily, par-
ticularly expressed in epithelial cell lines. FAT1 has been
shown to mediate cell-cell adhesion [48]. Further, it can
bind to β-catenin [49]. This may explain why we found a
similar distribution of FAT1 and β-catenin. The exact
role of FAT1 in the interplay of cytoskeleton rearrange-
ment and cell-cell adhesion remains to be identified.

Conclusion
This study’s findings are indicative of the ability of non-
tumorigenic and cancer cells to engulf leukocytes and
form heterotypic cell-in-cell structures. They also
suggest that the phagocytic potential of a cell line does
not solely depend on its malignant transformation, but
additionally on a complex set of biological factors not
analysed here. In our experiments, decreased viability
and exposure to X-ray and microwave irradiation in-
creased rates of non-professional phagocytosis.

Methods
Cell culture
We studied the phagocytic capacity of two non-
tumorigenic and two cancer cell lines. As non-tumorigenic
cell lines, we used BEAS-2B, a virus-transformed epithelial
lung cell line, and SBLF-9, a primary skin fibroblast cell
line. The cancer cell lines chosen were BxPC3, a human
pancreatic adenocarcinoma cell line, and ICNI, a human
melanoma cell line. Other studies conducted in our labora-
tory had found BEAS-2B, several primary skin fibroblast
cell lines and BxPC3 to display homotypic non-
professional phagocytosis [29, 50]. BxPC3 and a primary
skin fibroblast cell line also engulfed heterotypic cells [50].
In addition to this, the work of He et al. demonstrated the
ability of BxPC3 to engulf leukocytes [36]. On this basis,
we expected these three cell lines to be most likely to en-
gulf leukocytes. Lugini et al. demonstrated the ability of
metastatic melanoma cells to engulf leukocytes both
in vivo and in vitro [14]. In light of this finding, we in-
cluded a human melanoma cell line in our study. Our aim
in including both primary human fibroblast and melanoma
cell lines was to directly compare the uptake capacity of
healthy tissue to that of tumour tissue.
Host cells were cultured adherently on glass coverslips

in 6-well plates at 37 °C in a 5% CO2 atmosphere, reach-
ing a confluent layer of approximately 200,000 cells at
the time of co-incubation. We used individually com-
posed media, comprising different amounts of F-12
Medium, Dulbecco’s Modified Eagle’s Medium, foetal
calf serum (FCS) and variable additives, including 1%
penicillin/streptomycin antibiotics.

Isolation of leukocytes from peripheral blood
Peripheral blood mononuclear cells (PBMC) were used
as target cells. They were isolated both from whole
blood residues from platelet donations and from EDTA
(ethylenediaminetetra-acetic acid) tubes from healthy
blood donors. The Division of Transfusion Medicine at
Erlangen’s university hospital (Universitätsklinikum
Erlangen) provided the blood residues. The blood was
transferred from its collection tubes to a 50ml centri-
fuge tube and mixed with phosphate-buffered saline
(PBS) to produce equal volumes of 50 ml. Fresh 50ml
centrifuge tubes were filled with 15ml of Lymphoflot
(BioRad, Feldkirchen, Germany) each, and we carefully
superimposed 12.5 ml of the mixture of blood and PBS
on the Lymphoflot. The tubes were centrifuged for 20
min at 850 g at room temperature with a low acceler-
ation and with no brake. This process separated the vari-
ous cell fractions of the blood samples due to the
density gradient of Lymphoflot. The rings containing
PBMC were transferred to fresh 50ml centrifuge tubes
and mixed with cold PBS-EDTA. The tubes were centri-
fuged again for 12 min at 4 °C and 300 g. The resulting
PBMC pellet was resuspended in PBS-EDTA and centri-
fuged for 12 min at 4 °C and 200 g. After these washing
steps, we resuspended the PBMC pellet in 50 ml of
RPMI Medium with 1% penicillin/streptomycin antibi-
otics and 10% FCS (R-10 Medium) (all from Gibco,
Schwerte, Germany). The concentration of PBMC was
calculated using a Neubauer counting chamber.

Non-professional phagocytosis assay in vitro
In previous research, our working group had established
a protocol for the study of non-professional phagocytosis
of necrotic and apoptotic cells in vitro [50]. We slightly
modified this protocol for these experiments to take
account of particular characteristics of leukocytes.
For all experiments, PBMC were stained using live

dye, CyTRAK orange (Thermo Fisher, Schwerte,
Germany). The excess dye was washed off and the target
cells were resuspended in R-10 Medium. After staining,
PBMC were exposed to hyperthermia at 56 °C for 40
min in a water bath. Before co-incubation, adherent host
cell layers were washed with medium to remove cell
debris. The medium was replaced. Stained and
hyperthermia-treated target cells were added to the fresh
medium. The 6-well plates were shaken carefully to
distribute the target cells evenly on the cover slips. We
co-incubated host cells with target cells at 37 °C in a 5%
CO2 atmosphere.
Initially, we co-incubated the cells for 4 h and used a

1:1 ratio of target and host cells. After finding a low rate
of engulfment of stained, untreated leukocytes after 4 h
of co-incubation, we tested longer co-incubation times
(12 h, 48 h, 36 h, 48 h). We also increased the target-to-
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host cell ratio to 2:1 by adding 400,000 target cells to an
adherent layer of 200,000 BEAS-2B as host cells. In these
experiments, viability and death rates were determined
after co-incubation, using stained, otherwise untreated
leukocytes.

Variation of treatment prior to co-incubation
To determine if the cause of cell death impacted the
uptake of leukocytes, we varied the treatment applied
prior to co-incubation. PBMC were used as target
cells and stained with CyTRAK orange. Due to the
comparably high phagocytic capacity they had shown
in our standard non-professional phagocytosis assay,
we chose BEAS-2B as host cells for these experi-
ments. To potentially increase CIC rates and better
determine possible differences between the treatments
applied prior to co-incubation, we opted for a target-
to-host cell ratio of 2:1.
One batch of live stained PBMC was irradiated with

0.5Gy, 1Gy, 2Gy or 5Gy and then incubated for 18 h or
36 h at 37 °C and 5% CO2 to allow radiation damage to
occur. We determined their viability and co-incubated
them for 4 h with the recipient cells. A further batch of
live stained PBMC was exposed to hyperthermia at 44 °C
for 1 h. We compared conventional thermal hyperther-
mia generated by a water bath to microwave hyperther-
mia. The system for delivering microwave irradiation at
2.45 GHz, as described by Hader et al., enables hyper-
thermia under controlled conditions in a sterile environ-
ment [51]. After exposure to hyperthermia, the PBMC
were co-incubated with the recipient cells for 4 h. After
this, we determined the viability of the PBMC.

Fluorescent immunocytochemistry
For further staining, the cells were permeabilised and
fixed at room temperature with a solution containing
3.7% formaldehyde and 0.1% Triton X-100. We washed
the samples with PBS three times. Then, the samples
were incubated at 4 °C overnight with a blocking solu-
tion containing 5% FCS, 0.3% Triton X-100 and 0.3% so-
dium azide in PBS. Primary and secondary antibodies
were diluted in a solution containing 0.1 g bovine serum
albumin and 30 μl Triton X-100 in PBS. The samples
were incubated overnight once again, this time with the
primary antibody dilution in a humidity chamber at 4 °C.
The next day, the samples were washed three times with
PBS and then incubated with the secondary antibody di-
lutions for 1.5 h at room temperature in a humidity
chamber. Samples were washed three times with PBS
again before drying. Dry samples were mounted with
Prolong Gold with DAPI (4′,6-diamidino-2-phenylin-
dole) (Thermo Fisher, Schwerte, Germany). Supplemen-
tary Tables 1 and 2 list the primary and secondary
antibodies used for the experiments. Actin was stained

using phalloidin conjugated with Alexa Fluor 488 diluted
1:500 to 1:1000. The images were acquired using a fluor-
escence microscope (AxioImager Z2, Zeiss, Göttingen,
Germany).

Image analysis and CIC count
We used Biomas software to analyse the images. Prior to
analysis, we marked CIC structures manually on the im-
ages. The software then counted the number of marked
CIC structures and the number of host cells. A structure
was classified as one CIC if one or more red-stained leu-
kocytes were engulfed by one recipient cell. The process
of internalisation deformed the host cell’s nucleus, while
the leukocytes retained an intact nucleus and a round
shape. The CIC rate calculated by the software is the
quotient of the number of CIC structures and the
number of host cells. CIC rates are expressed as a
percentage.

Annexin V-FITC/propidium iodide staining
For each batch, Annexin V-FITC (BioLegend, San Diego,
CA, USA)/propidium iodide (Thermo Fisher, Schwerte,
Germany) staining was performed to determine numbers
of viable, apoptotic and necrotic leukocytes. 1 × 105 cells
were centrifuged and the pellet was resuspended with
0.1 μg/ml Annexin V-FITC and 0.2 μg/ml propidium
iodide in Ringer’s solution. We incubated the samples
for 30 min at 4 °C in the dark and subsequently analysed
the samples using flow cytometry.

Statistical data analysis
We used GraphPad Prism version 8 (GraphPad Software,
San Diego, CA, USA) for data analysis and plotting. Each
assay was performed at least three times. We calculated
the mean and the standard deviation of the results.
Apoptotic and necrotic cell rates were added together to
obtain death rates. As the data did not follow a Gaussian
distribution, we calculated the Spearman correlation co-
efficient. Kruskal-Wallis tests were performed to analyse
the phagocytic capacity of the various host cells. We per-
formed Mann-Whitney U-tests to compare the effect of
different impact times after irradiation on CIC rates and
death rates, depending on the dose applied. We also
used Mann-Whitney U-tests to analyse the difference in
CIC rates and death rates after conventional and micro-
wave hyperthermia.
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