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Cyr61 promotes Schwann cell proliferation
and migration via αvβ3 integrin
Zhenghui Cheng1†, Yawen Zhang1†, Yinchao Tian1, Yuhan Chen1, Fei Ding1,2, Han Wu3, Yuhua Ji1* and
Mi Shen1,2*

Abstract

Background: Schwann cells (SCs) play a crucial role in the repair of peripheral nerves. This is due to their ability to
proliferate, migrate, and provide trophic support to axon regrowth. During peripheral nerve injury, SCs de-
differentiate and reprogram to gain the ability to repair nerves. Cysteine-rich 61 (Cyr61/CCN1) is a member of the
CCN family of matrix cell proteins and have been reported to be abundant in the secretome of repair mediating
SCs. In this study we investigate the function of Cyr61 in SCs.

Results: We observed Cyr61 was expressed both in vivo and in vitro. The promoting effect of Cyr61 on SC
proliferation and migration was through autocrine and paracrine mechanisms. SCs expressed αvβ3 integrin and the
effect of Cyr61 on SC proliferation and migration could be blocked via αvβ3 integrin. Cyr61 could influence c-Jun
protein expression in cultured SCs.

Conclusions: In this study, we found that Cyr61 promotes SC proliferation and migration via αvβ3 integrin and
regulates c-Jun expression. Our study contributes to the understanding of cellular and molecular mechanisms
underlying SC’s function during nerve injury, and thus, may facilitate the regeneration of peripheral nerves after
injury.
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Background
Peripheral nerve injury is a common clinical problem. It
seriously affects the quality of life in patients and results
in social and economic burdens. The treatment for per-
ipheral nerve injury includes nerve suturing, autogenous
nerve transplantation, and tissue-engineered nerve trans-
plantation. These treatments promote the functional
recovery of injured nerves [1]. However, to date, the
clinical effects of these therapies have not been satisfac-
tory. Understanding the cellular and molecular

mechanisms of peripheral nerve injury will be helpful for
the clinical treatment of peripheral nerve injury.
Compared to peripheral nerve injury in the central

nervous system (CNS), SCs are the main glial cells in
peripheral nerves and have a robust ability to regenerate
[2]. Following peripheral nerve injury, SCs start to prolif-
erate and migrate to the injured site to clear axon and
myelin debris and build bands of Büngner [3]. In
addition, SCs secrete a large number of neurotrophic
factors to support the survival of neurons and create a
conducive microenvironment for nerve regeneration [4].
These events rely on the remarkable ability of SCs to
transform into a potent repair phenotype. SCs de-
differentiate into a proliferative, immature-like state via
the activation of the JUN dependent repair program [5].
After peripheral nerve injury, axon breaks, and SCs lose
contact with their axons. SCs can survive in the absence
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of axons which is important for subsequent nerve regen-
eration. This is in part because of the ability of SCs to
support their survival through autocrine mechanisms
[6]. Factors that accelerate SCs proliferation during the
early stages after peripheral nerve injury and/or promote
SCs migration and myelination during the later stages
after nerve injury benefit nerve regeneration and func-
tional recovery [3]. However, the precise mechanisms for
this are unclear. Considering the critical role played by
SCs, identifying factors that can accelerate the prolifera-
tion and migration of SCs may help promote the repair
and regeneration of peripheral nerves after injury.
Cysteine-rich protein 61 (Cyr61, also known as CCN1)

is a member of the CCN family of matrix cell proteins.
Cyr61 is a secretory protein of the CCN family signal
protein related to ECM [7]. It can regulate a wide range
of cell activities, including cell adhesion, migration, pro-
liferation, differentiation, apoptosis, and aging by inter-
acting with integrin receptors on the cell surface [8].
Previous studies have demonstrated that Cyr61 stimu-
lates the migration of smooth muscle cells [9], fibro-
blasts [10], endothelial cells [11], and some cancer cells
[12–14]. Cyr61 has also been observed in the nervous
system. For example, Cyr61, as a dendrite growth regula-
tor of hippocampal neurons, controls dendrite growth in
an αβ1 integrin-dependent manner [15]. Cyr61 also plays
a role in tissue repair. During the process of skin wound
healing, Cyr61 can accelerate re-epithelialization by pro-
moting the migration and proliferation of keratinocytes
[16]. A recent study found that SCs transformed into re-
pair mediating SCs after FYT702P treatment and the

secretion levels of Cyr61 in SC conditioned medium in-
creased. This indicated that Cyr61 may participate in
SCs biology to facilitate nerve repair [17]. However, its
role in SCs has not been fully elucidated.
In this study, we aimed to demonstrate the functional

effects of Cyr61 on SCs proliferation and migration. We
found that Cyr61 affects proliferation and migration in
SCs through autocrine and paracrine mechanisms, and
functions via αvβ3 integrin expressed on SCs and regu-
lating c-Jun expression. Together, these findings suggest
that Cyr61 may contribute to peripheral nerve system
(PNS) repair by supporting SC proliferation and migra-
tion important for nerve regeneration.

Results
In vivo and in vitro Cyr61 expression in SCs
Western blot and immunocytofluorescence (ICF) assays
were used to determine the expression levels of Cyr61 in
cultured SCs. Primary cultured SCs are shown in Fig. 1a.
Under light microscopy, the cells were bright and ar-
ranged in a regular pattern and depicted a typical SC
morphology. In cultured SCs, ICF assays using anti-
Cyr61 and the SC marker anti-S100β antibodies demon-
strated that Cyr61 expression overlapped with S100β
(Fig. 1b). Western blot also demonstrated that Cyr61
protein (42KD) was expressed in cultured SCs (Fig. 1c).
In transverse sections of normal rat sciatic nerves,
immunohistofluorescence (IHF) assays using anti-Cyr61
and anti-S100β antibodies demonstrated that Cyr61
protein was colocalized with S100β protein expression
(Fig. 1d).

Fig. 1 In vivo and vitro expression of Cyr61. a Primary SC cultures under light microscopy; b SC primary cultures were immunostained using
antibodies against Cyr61 (green color) and S100β (red color), with cell nuclei stained using Hoechst 33342 (blue color), Scale bar = 50 μm; c
Western blots demonstrating Cyr61 protein expression in primary cultured SCs; d nerve transverse sections immunostained using antibodies
against Cyr61 (green color) and S100β (red color), with cell nuclei stained using Hoechst 33342 (blue color), Scale bar = 50 μm
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Inhibition of endogenous Cyr61 expression levels in SCs
attenuates cell proliferation and migration and
downregulate c-Jun expression in SCs
SCs were transfected with siRNA against Cyr61 to deter-
mine whether reduced Cyr61 expression levels affect cell
proliferation and migration. Three siRNAs designated as
Cyr61-siRNA-1, Cyr61-siRNA-2, Cyr61-siRNA-3 were
designed to reduce expression levels of Cyr61. The qPCR
demonstrated that no changes in Cyr61 mRNA levels
were observed in cells transfected with non-targeting
negative control (NTC) siRNA compared to mock-
transfected cells (Fig. 2a). The western blot demon-
strated that no changes in Cyr61 protein levels were

observed in cells transfected with non-targeting negative
control (NTC) siRNA compared to mock-transfected
and control cells (Fig. 2b). Compared to cells transfected
with NTC siRNA, SCs transfected with siRNA-2 or
siRNA-3 had reduced Cyr61 mRNA and protein expres-
sion levels (Fig. 2a-c). The secretion levels of Cyr61 have
no changes in SCs transfected with NTC siRNA com-
pared to mock-transfected SCs and the secretion levels
of Cyr61 in SCs after transfection with Cyr61-siRNA2
were lower compared to SCs transfected with NTC, as
determined by ELISA (Fig. 2d). This indicated that
Cyr61-siRNA transfection inhibited Cyr61 secretion in
SCs. Cell Counting Kit8 (CCK-8) assays demonstrated

Fig. 2 Endogenous Cyr61 is required for the proliferation and migration of SCs and regulated c-Jun expression. a Histograms for three
independent qPCR experiments of primary SCs transfected with Cyr61-specific siRNAs or with NTC siRNA; b Western blots demonstrating protein
knockdown efficiency of three different Cyr61-targeting siRNAs; c Histograms for three independent western blot experiments of primary SCs
were transfected with Cyr61-specific siRNAs or with NTC siRNA; d ELISA histograms of the results from three independent experiments for Cyr61
secreted by SCs after transfection with Cyr61-specific siRNA or with NTC siRNA; e Histograms of three independent experiments of SCs cultured
for 60 h after transfection with Cyr61-specific siRNAs or with NTC siRNA; f Representative images of SCs transfected with siRNAs that migrated to
the underside of transwell membranes. g Histogram results from three independent experiments for cell migration. h Western blots
demonstrating c-Jun protein expression in SCs and SCs transfected NTC siRNA or Cyr61-specific siRNAs. i Histograms for three independent
western blot experiments of c-Jun expression in SCs and SCs transfected with Cyr61-specific siRNAs or with NTC siRNA. *, p < 0.05, **, p < 0.01, ***,
p < 0.001, ****, p < 0.0001
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that proliferation rates of SCs transfected with Cyr61
siRNA-2 or Cyr61 siRNA-3 were also lower compared to
cells transfected with NTC siRNA at different time points
from 0 to 60 h (Fig. 2e). Transwell-based migration assays
and crystal violet staining were then used to determine
the effects of Cyr61-siRNA-2 or Cyr61-siRNA-3 on SC
migration. The number of cells that migrated through the
transwell chamber, assessed using crystal violet staining,
was substantially lower in SCs transfected with Cyr61-
siRNA-2 or Cyr61-siRNA-3 compared to SCs transfected
with NTC siRNA (Fig. 2f and g). This indicated that
Cyr61 siRNA transfection suppressed cell migration. C-
Jun is essential for the normal activation of the SC repair
programme and contributes to SC proliferation and mi-
gration [18–20]. Thun, western blot was used to detect c-
Jun expression. The results showed demonstrated that
compared to SCs transfected with NTC siRNA c-Jun pro-
tein expression was lower in SCs transfected with Cyr61-
siRNA-2 while not significant in SCs transfected with
Cyr61-siRNA-3 (Fig. 2h and i).

Cyr61 enhances SCs proliferation and migration and
enhanced c-Jun expression in SCs
Cyr61 has been reported to stimulate proliferation and
migration of cancer cells, fibroblasts, and endothelial
cells [21], however, the effect of Cyr61 in SCs remained
to be deciphered. To determine whether Cyr61 influ-
ences the proliferation and migration of SCs, CCK-8 as-
says, and transwell-based migration assays were
performed. To determine the effective concentration of
Cyr61 on SCs, different concentrations of Cyr61 on SC
proliferation was measured using CCK-8 assays. As
shown in Fig. 3a, when 2 nM exogenous Cyr61 was in-
cluded in the culture media, the SC proliferation rate in-
creased compared to control cells after 48 h. This result
indicated that the proliferation of cultured SCs could be
increased by exogenous Cyr61. Transwell assays were
then performed to measure cell migration. Cells that
were able to migrate to the lower chamber were quanti-
tated to determine the effects of exogenous Cyr61. Re-
sults of the migration assays demonstrated that 2 nM

Fig. 3 Exogenous Cyr61 increases the proliferation and migration of SCs and upregulated c-Jun expression. a Histogram of SC proliferation
cultured for 48 h after the addition of 0.25 nM, 0.5 nM, 1 nM, 2 nM of Cyr61 and control media measured using CCK-8 assays; b Histogram of SC
proliferation cultured for 36 h after the addition of 2 nM of Cyr61, 0.5 μg neutralizing antibody αvβ3 and Mouse IgG1 Isotype Control (IgG), 2 nM
Cyr61 + 0.5μg neutralizing antibody αvβ3 and control media measured using CCK-8 assays; c Histogram of SC proliferation cultured for 60 h after
the addition of 2 nM of Cyr61, 0.5 μg neutralizing antibody αvβ3 and Mouse IgG1 Isotype Control (IgG), 2 nM Cyr61 + 0.5 μg neutralizing antibody
αvβ3 and control media measured using CCK-8 assays; d Representative images of SCs treated with 2 nM of Cyr61, 0.5 μg neutralizing antibody
αvβ3 and Mouse IgG1 Isotype Control (IgG), 2 nM Cyr61 + 0.5 μg neutralizing antibody αvβ3 and control media that migrated to the underside of
the transwell membrane after 24 h. e Histograms from three independent cell migration experiments; f Western blots demonstrating c-Jun
protein expression in SCs treated with 2 nM of Cyr61 or control medium; i Histograms for three independent western blot experiments of c-Jun
expression in SCs treated with 2 nM of Cyr61 or control medium. *, p < 0.05, **, p < 0.01, ***, p < 0.001, ****, p < 0.0001
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Cyr61 added to the lower chamber of the transwell in-
creased the migration rate of SCs compared to media
alone (Fig. 3d and e). Results of Western blot demon-
strated that the protein expression of c-Jun in SCs was
increased after adding exogenous Cyr61(Fig. 3f and g).
This might suggest that Cyr61 could increase the prolif-
eration and migration of SCs and increased c-Jun pro-
tein expression in SCs.

Cyr61 enhances SC proliferation and migration via
integrin αvβ3
As a secreted protein, Cyr61 binds to membrane recep-
tors on the cell surface. Several studies have shown that
αvβ3 integrin is a cell receptor for Cyr61. Cyr61 associ-
ates with αvβ3 integrin to promote endothelial cell adhe-
sion, migration, proliferation, survival, and tubular
formation [13]. Cyr61 modulates vascular formation by
directly binding to αvβ3 to enhance endothelial cell ad-
hesion, migration, and proliferation [19]. In addition,
Cyr61 has been shown to direct chondrosarcoma cell
migration through αvβ3 integrin [20]. However, the
function of Cyr61 on SCs is unknown. Hence, immuno-
fluorescence assays were used to determine the expres-
sion of αvβ3 integrin in SCs. The αvβ3 was expressed in
S100β-positive cells, which indicated that αvβ3 was
expressed in SCs (Fig. 4).
To determine whether Cyr61 influences the prolifera-

tion and migration of SCs via αvβ3 integrin, CCK-8, and
transwell-based migration assays were performed. As
shown in Fig. 3b-e, the proliferation and migration rate
of SCs was inhibited by αvβ3 neutralizing antibody, and
the increased proliferation and migration rate of SCs
with addition of Cyr61 was blocked by αvβ3 neutralizing
antibody. The proliferation rate of SCs showed no differ-
ence by αvβ3 neutralizing antibody after cultured for 60

h (Fig. 3c). CCK-8 assays demonstrated that 2 nM of
Cyr61 could increase the proliferation of SCs, but this
effect could be inhibited by 0.5 μg αvβ3 neutralizing
antibody after cultured for 36 h and 60 h (Fig. 3b and d).
The number of cells that migrated through the transwell
chamber was assessed using crystal violet staining (Fig.
3e). The addition of exogenous Cyr61 increased SC mi-
gration and this effect could be inhibited by 0.5 μg αvβ3
neutralizing antibody. The addition of αvβ3 neutralizing
antibody decreased SC migration rates (Fig. 3e). These
results indicated that αvβ3 integrin was involved in SCs
proliferation and migration and Cyr61 could increase
the proliferation and migration of SCs via αvβ3.

Discussion
A better understanding of factors that facilitates nerve
repair is essential for future improvement in regenerative
medicine [5]. Our findings indicate that SCs express
Cyr61 both in vivo and in vitro. We demonstrated that
inhibition of Cyr61 expression in SCs can attenuate SC
proliferation and migration ability. Cyr61 enhances SC
proliferation and migration via αvβ3 integrin. Cyr61 en-
hances c-Jun expression in cultured SCs. Silencing
Cyr61 in cultured SCs could decrease c-Jun expression.
The unique regeneration ability of PNS is attributed to

the function of SCs. Glial cells in the peripheral nerve
have robust plasticity [22]. In addition, SCs secrete a var-
iety of factors to create a microenvironment for cell re-
generation, including nerve growth factors [23].
Neuroregulatory proteins secreted by SCs induce an
autocrine mechanism to promote SC proliferation [24].
SC survival after an injury is regulated by an autocrine
survival loop that includes the secretion of IGF-1,
platelet-derived growth factor-BB, and NT-3 [25]. Un-
derstanding how secreted proteins from SC influences

Fig. 4 αvβ3 expression levels in SCs determined using ICF. Primary SCs were immunostained using antibodies against S100β (green color) (a, e)
and αvβ3 (red color) (b, f), cell nuclei were stained using Hoechst 33342 (blue color) (c, f), a-d: Scale bar = 50 μm, e-h: Scale bar = 25 μm
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its function may contribute to the mechanistic under-
standing of nerve regeneration.
Previous studies have demonstrated increased Cyr61

secretion by repair mediating SCs. The repair type SCs
produce guidance tracks for regenerating axons called
Büngner bands. Once SCs reprogrammed into repair
type cells, precursor/immature SC properties are re-
stored. Its proliferation and migration abilities increase.
However, the mechanism is yet to be deciphered. Repro-
graming SCs into repair phenotype is controlled tran-
scriptionally by mechanisms involving the transcription
factor c-Jun, which is rapidly upregulated in SCs after
nerve injury [4, 26]. In this study, primary SCs were cul-
tured in vitro to determine the effects of Cyr61 on the
proliferation and migration of SCs. Our results demon-
strated that compared to cells transfected with NTC
siRNA, Cyr61 secretion in cells transfected with cyr61
siRNA was reduced. In addition, the proliferation and
migration ability of SCs transfected with Cyr61 siRNA
was reduced significantly. Silencing Cyr61 in cultured
SCs also downregulated c-Jun expression. This suggested
that lower Cyr61 secretion and expression in SCs leads
to reduced proliferation and migration rates. And with
the decreasing of Cyr61 in cultured SCs, c-Jun expres-
sion was inhibited. We next cultured SCs with exogen-
ous Cyr61 to observe its biological effect. Our results
indicated that exogenous Cyr61 could increase the pro-
liferation and migration of SCs. In the meantime, c-Jun
expression was increased in cultured SCs with exogen-
ous Cyr61. These results suggested that Cyr61, through
an autocrine or paracrine mechanism, could significantly
increase the proliferation and migration of SCs. Cyr61
could also influence the c-Jun expression in cultured
SCs. It has long been known that c-Jun is rapidly in-
duced to high levels in the SCs of injured nerves [4]. C-
Jun promotes dedifferentiation of SCs and overexpres-
sion of c-Jun alone might be sufficient to reprogram SCs
of intact nerves into repair phenotype [27]. C-Jun signal-
ing involved in promoting many cell proliferation and
migration [20, 28, 29]. C-Jun-modified SCs showed en-
hanced proliferation and migration abilities [20]. Here,
we suppose that Cyr61 promotes SC proliferation and
migration by regulating c-Jun expression. Since in-
creased secretion of Cyr61 was found in repair mediat-
ing SCs, Cyr61 might also could modulate SC phenotype
by influence c-Jun protein expression. During the
process of peripheral nerve regeneration after injury, we
hypothesized that SC repair type cells can survive in an
environment that lacks the support of axons and other
cells. One of the reasons could be that this is through
their ability to proliferate and migrate via the secretion
of Cyr61.
Cyr61 has been previously demonstrated to regulate

cell proliferation and migration by binding to integrin

receptors on the cell surface. Exogenous recombinant
Cyr61 has been reported to induce angiogenesis [30] and
promote cell proliferation, migration, adhesion, and dif-
ferentiation [31]. At present, the known receptors for
Cyr61 include integrin α6β11 [32, 33], αIIbβ3 [34], αmβ2
[35], αvβ3 [36, 37], β1 [38], αDβ2 [39], and heparinase
(HSPGs) [9]. Cyr61 can associate with integrin αvβ3 on
the surface of endothelial cells to promote endothelial
cell adhesion, migration, proliferation, survival, and
tubular formation [11]. By associating with integrin αvβ5
and αvβ3 on bile duct cells, Cyr61 can induce the expan-
sion of the bile duct [40]. In addition, Cyr61 can syner-
gize with other mitogenic growth factors to enhance
growth factor-induced DNA synthesis in fibroblasts and
endothelial cells through integrin αvβ3 [10, 41]. But the
function of Cyr61 with integrin αvβ3 on SCs is unclear.
Using ICF, we demonstrated that SCs expressed the re-
ceptor αVβ3. A recent study showed that SPP1 might
promotes SCs proliferation by binding receptors αvβ3
[42]. In our research, the ability of Cyr61 to promote the
proliferation and migration of SCs was reduced by
blocking the αvβ3 receptor. This strongly suggested that
Cyr61 played a significant role in SC proliferation and
migration through the integrin receptor αvβ3, and we
hypothesize this was via an autocrine mechanism.

Conclusions
In summary, we demonstrated that Cyr61 promotes pro-
liferation and migration of SCs through an autocrine or
paracrine mechanism via αvβ3 integrin. Cyr61 might
modulate SC function by regulating c-Jun expression.
Our results provide a functional mechanism of SC se-
creted proteins to promote nerve regeneration which
may provide strategies for nerve repair.

Methods
Animals
Thirty neonatal 1 to 3 day old and three adult male
Sprague-Dawley (SD) rats (180 g–220 g) were purchased
from the Experimental Animal Center at Nantong Uni-
versity, China. The rats were specific pathogen free, ori-
ginally from Charles River Laboratories (Wilmington,
MA) and bred in Laboratory Animal Research Center at
Nantong University. The animals were housed, in poly-
carbonate cages with corn cob beddings, in a 12-h light/
dark schedule with ad libitum access to food and water
in a barrier unit. All animal experiments were performed
in accordance with the National Institutes of Health
(NIH) Guide for the Care and Use of Laboratory Ani-
mals and approved by the Administration Committee of
Experimental Animals of Nantong University, China
(approval No. 20130410–006).
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SCs isolation and transfection
Rat SCs were harvested as previously described [43] with
minor modifications. Briefly, the Sprague-Dawley rats (1
to 3 d- old) were sanitized using 75% ethanol prior to
decapitation. Then sciatic nerves were harvested and en-
zymatically dissociated by incubation at 37 °C sequen-
tially with 1% collagenase and 0.125% trypsin for 30 and
10min, respectively. The mixture was triturated, centri-
fuged, and resuspended in 10% FBS in DMEM. The cell
pellets were plated on poly-L-lysine precoated dishes
using the same media. The following day, 10 μM cyto-
sine arabinoside was added and incubated for an add-
itional 48 h to remove fibroblasts. The cell culture was
maintained in DMEM supplemented with 10% FBS,
2 μM forskolin (Sigma Aldrich, St. Louis, MO, USA),
and 2 ng/ml heregulin (HRG, R&D system, Minneapolis,
MN, USA) to stimulate SC proliferation. For additional
purification, the cell culture was gently trypsinized, pel-
leted, and incubated with anti-Thy1.1 antibody (1:1000,
Sigma Aldrich, St. Louis, MO, USA; Cat# M7898, RRID:
AB_477242; Clone number: TN26) on ice for 2 h,
followed by incubation in complement (Sigma Aldrich,
St. Louis, MO, USA) for an additional 2 h. All media and
supplements were purchased from Gibco-Invitrogen
(Carlsbad, CA, USA).
For cell transfection, purified primary SCs were trans-

fected with Cyr61 siRNAs designated as ((Cyr61-siRNA-
1 (sequence: GCAGACCCTGTGAATATAA), Cyr61-
siRNA-2 (sequence: GGAATGGGTCTGTGATGAA),
Cyr61-siRNA-3 (sequence: GCTCCAGTGTGAAGAA
ATA)) or NTC (Ribobio, Guangzhou, Guangdong,
China), using riboFECT CP Transfection kit (Ribobio,
Guangzhou, Guangdong, China) following the manufac-
turer’s instructions.

Nerve tissue preparation
The adult male SD rats were anesthetized intraperitone-
ally using a mixture of 85 mg/kg trichloroacetaldehyde
monohydrate (RichJoint, Shanghai, China), 42 mg/kg
magnesium sulfate (Xilong Scientific, Guangzhou,
Guangdong, China), and 17mg/kg sodium pentobarbital
(Sigma Aldrich, St. Louis, MO, USA). After
anaesthetization, the rats were transcranial perfused se-
quentially with saline and 4% (v/v) paraformaldehyde in
0.1M PBS. Then, the sciatic nerve segments at 10 mm
above the bifurcation into the tibial and common fibular
nerves were harvested for frozen sections.

Enzyme-Linked Immunosorbent Assay (ELISA)
Primary SCs were transfected with NTC or siRNA tar-
geting Cyr61. After transfection, the media was replaced
with serum-free medium for an additional 12 h incuba-
tion. The media was then harvested and filtered through
a 0.22 μm filter (Millipore, Bedford, MA, USA). The

protein levels of Cyr61 in the media were measured
using a Cyr61 ELISA Kit (Cusbio, Wuhan, Hubei, China)
based on the manufacturer’s instructions. Measurement
data were summarized from 3 independent experiments,
each run in triplicate.

RNA extraction and quantitative real time RT-PCR (qPCR)
Total RNA of each group was extracted using Trizol
(Invitrogen, Carlsbad, CA). Reverse transcription was
carried out with SuperScript First-Strand Synthesis Sys-
tem (Invitrogen, Carlsbad, CA). Gene products were an-
alyzed using Fast EvaGreen qPCR Master Mix (Biotium,
Hayward, CA) and specific primers in StepOne Real-
Time PCR System (Applied Biosystems). Reaction com-
ponents in each well were composed of 2× Fast Eva
Green Master Mix, 10 μl; primers, 1 μl each; template,
1 μl; ROX, 2 μl; and H2O, 5 μl. Three step fast cycling
protocol was performed. Relative gene expression levels
were calculated as ratios of the mRNA levels normalized
against those of 18 s mRNA. All the results were
expressed as the mean ± SD of three independent experi-
ments. Primer sequences are provided in Additional file 1:
Table 1.

Western blot analysis
Total proteins from SCs were extracted using the M-
PER cell protein extraction reagent (Pierce, Rockford, IL,
USA). Extracted proteins were quantified using the Fast
Silver Stain Kit (Beyotime, Haimen, Jiangsu Province,
China). Twenty microgram of total protein were loaded
onto a 12% (w/v) SDS-PAGE, electrophoresed, and
transferred to a PVDF membrane (Millipore, Bedford,
MA). After blocking for 1 h with 5% (w/v) non-fat dry
milk in TBS-T (0.05% (v/v) Tween 20 in Tris-buffered
saline), the membrane was incubated with specific pri-
mary antibodies diluted in blocking buffer overnight at
4 °C. The rabbit polyclonal antibody to Cyr61 (1:500,
Abcam, Cambridge, MA, USA; Cat# ab24448, RRID:
AB_2088724) and rabbit monoclonal antibody to c-Jun
(1:2000, Abcam, Cambridge, MA, USA; Abcam Cat#
ab40766, RRID: AB_731602, Clone number: EP693Y)
were used. Afterward, the membranes were washed with
TBS-T and then incubated with HRP conjugated sec-
ondary antibody diluted in blocking buffer (1:5000,
Abcam, Cambridge, MA, USA) at RT for 2 h. Immuno-
reactive bands were visualized using enhanced chemilu-
minescence (Beyotime, Haimen, Jiangsu Province,
China). Densitometry analysis was performed using the
Image J software (http://imagej.nih.gov/ij/).

Immunofluorescent staining
Cells were plated on poly-L-lysine pre-coated coverslips
and cultured overnight. They were then fixed in 4%
paraformaldehyde for 30 min at room temperature (RT).
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Sciatic nerve segments from adult rats were dissected,
fixed in 4% paraformaldehyde for 24 h, dehydrated in
30% sucrose at 4 °C, then cut and mounted onto micro-
scope slides. Cells and sciatic nerve sections were
blocked for 2 h at 37 °C. Cells were incubated with the
following antibodies overnight at 4 °C: mouse monoclo-
nal or rabbit polyclonal antibody to S100β (1:100,
Abcam, Cambridge, MA, USA; Cat# ab14849, RRID:
AB_301508, Clone number: 4B3; Cat# ab52642, RRID:
AB_882426), rabbit polyclonal antibody to Cyr61 (1:200,
Abcam, Cambridge, MA, USA; Cat# ab24448, RRID:
AB_2088724) or mouse monoclonal antibody to αvβ3 (1:
200, R&D system, Minneapolis, MN, USA; Cat#
MAB3050, RRID: AB_2128187; Clone number: #23C6).
After washing, the cells and sciatic nerve sections were
incubated with FITC-conjugated rabbit anti-mouse IgG
and Cy3-conjugated donkey anti-rabbit IgG (1:400,
Abcam, Cambridge, MA; Cat# ab6724, RRID: AB_
955315; Cat# ab97075, RRID: AB_10679955) for 2 h at
RT. Nuclei were counterstained with Hoechst 33342 dye
(5 μg/mL, Sigma Aldrich, St. Louis, MO, USA). Fluores-
cence was visualized under a TCS SP5 confocal micro-
scope (Leica Microsystems, Wetzlar, Germany).

Cell proliferation analysis
SC proliferation was assessed after siRNA transfection,
or exposure to recombinant Cyr61 with/without αvβ3
neutralizing antibody (R&D system, Minneapolis, MN,
USA; Cat# MAB3050, RRID: AB_2128187; Clone num-
ber: #23C6) and mouse IgG1 isotype control (R & D,
Minneapolis, MN, USA; Cat# MAB002, RRID: AB_
357344; Clone number:11711) was used as a control for
neutralizing antibody. Cell Counting Kit8 (CCK-8)
(Biyuntian Company, Jiangsu Province, China) was then
used. Briefly, an equal number of cells were plated onto
a 96-well plate. Cells in each treatment group were cul-
tured for 0-60 h. Then, 10 μL of CCK-8 solution was
added to each well and incubated at 37 °C for an add-
itional 2 h. Optical density (OD) was determined at a
wavelength of 450 nm.

Cell migration analysis
SC migration was monitored after siRNA transfection,
or exposure to recombinant Cyr61 with/without neutral-
izing antibody and mouse IgG1 isotype control was used
as a control for neutralizing antibody. The transwell mi-
gration assay was used as previously described [44].
After transfection, 2 × 104 cells in serum-free DMEM
were plated onto the upper chamber of each transwell
with 8 μm pore size (Costar, Corning, Inc., NY). The
lower chamber was supplemented with 800 μL of
complete media (DMEM+ 10%FBS) or complete media
with Cyr61 or complete media with Cyr61 and αvβ3
neutralizing antibodies. Cells were incubated for 24 h at

37 °C in 5% CO2. Non-migrating cells were removed
from the upper surface of the membrane using a cotton
swab. Cells on the lower side of the membrane were
stained with crystal violet, and migration was quantified
by counting cells from four microscope fields. Each
treatment condition was run in triplicate.

Statistical analysis
Data were expressed as mean ± SEM, and statistical ana-
lysis was performed using GraphPad Prism Software
(GraphPad Software, LaJolla, CA). Comparisons between
two groups were performed using the Student’s t-test.
Differences of p < 0.05 were considered statistically
significant.
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