
BMC Molecular and
Cell Biology

Vidanaarachchi et al. BMC Molecular and Cell Biology 2020, 21(Suppl 1):34
https://doi.org/10.1186/s12860-020-00269-y

RESEARCH Open Access

IMPARO: inferring microbial interactions
through parameter optimisation
Rajith Vidanaarachchi1*, Marnie Shaw1, Sen-Lin Tang2 and Saman Halgamuge1,3

From International Conference on Bioinformatics (InCoB 2019)
Jakarta, Indonesia. 10–12 September 2019

Abstract

Background: Microbial Interaction Networks (MINs) provide important information for understanding bacterial
communities. MINs can be inferred by examining microbial abundance profiles. Abundance profiles are often
interpreted with the Lotka Volterra model in research. However existing research fails to consider a biologically
meaningful underlying mathematical model for MINs or to address the possibility of multiple solutions.

Results: In this paper we present IMPARO, a method for inferring microbial interactions through parameter
optimisation. We use biologically meaningful models for both the abundance profile, as well as the MIN. We show
how multiple MINs could be inferred with similar reconstructed abundance profile accuracy, and argue that a unique
solution is not always satisfactory. Using our method, we successfully inferred clear interactions in the gut microbiome
which have been previously observed in in-vitro experiments.

Conclusions: IMPARO was used to successfully infer microbial interactions in human microbiome samples as well as
in a varied set of simulated data. The work also highlights the importance of considering multiple solutions for MINs.
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Background
Microbes are the most abundant, widespread organisms
on Earth. They can be found in the biosphere, including all
animals and plants, and most habitats in the oceans [1, 2],
on land, or in air. Many studies show that microbes play
a important role in the health and well-being of the hosts
they are associated with. For example, in the human body,
imbalances or changes in microbial communities corre-
lates to various illnesses and other complications [3–9]. In
plants, microbes provide essential nutrients, including all
economic crops [10–12].
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In the past, studying microbial communities through
cultivation in laboratories was challenging [13]. Also, as
over 99% [14, 15] of microbial species on earth are yet
to be identified, the inability to cultivate and separate
some microbial species in a laboratory environment have
hindered progress on the study of microbiota.

Due to recent advances in 16S rRNA sequencing and
high throughput sequencing, though, scientists can now
explore the nature of real-world microbial samples and
recognise individual species in these samples. 16S ribo-
somal RNA has been used by many scientists in order to
identify, categorise and classify microbes.

Microbial networks are inherently complex in nature.
With longitudinal studies, for example, it has become
clear that the composition of microbial communities are
constantly changing. Now, in order to properly under-
stand these communities, it is important to study how
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they are changing, why they are changing, and how they
interact with each other. To do so, it is important to
acknowledge the following dynamics which play a part
in the microbial composition changes. There could be
temporal changes which are caused by external factors
such as temperature variations [16], diurnal cycles [17] or
seasonal variations [18]. In addition to these, other non-
random co-occurrence patterns have been observed. Like
in any other community, organisms in microbial com-
munities interact in various ways with each other. Some
of these interactions could be categorised under mutu-
alism, competition, parasitism, predation, commensalism
and amensalism [19].

Some important questions to ask about any biologi-
cal community include, ‘Who is there?’, ‘What are they
doing?’, and ‘How will they respond?’ [20]. While 16S ribo-
somal RNA sequencing can answer the first question, the
latter two questions require an understanding of the inter-
actions between different bacteria, hence the importance
of inferring microbial interactions. These answers will
improve our understanding of the human gut, the world’s
oceans, plant root systems, lakes etc.

Related work
With the advance of high throughput sequencing, high
throughput inferring approaches have also been recently
proposed. These are shown to be more successful than
in-vitro analysis of interaction patterns [21]. Some of
these approaches are Metagenomic Microbial Interac-
tion Simulator (MetaMIS) [22], Rule-based Microbial
Network (RMN) algorithm [23], Sparse Inverse Covari-
ance Estimation for Ecological Association Inference
(SPIEC-EASI) [24], Learning Interactions from Micro-
bial Time Series (LIMITS) [25], Boolean Abundance
Analysis [26], Boolean Dynamic Model [27], Stochastic
Generalised Lotka-Volterra and Extended Kalman Filter
(SgLV-EKF) [28] and Sparse Correlations for Compo-
sitional Data (SparCC) [29]. These algorithms mainly
take two approaches [22], correlation-based analysis and
model centred analysis. Often algorithms combine the
two approaches to come up with a more robust method of
inferring microbial interactions.

MetaMIS [22] uses a model-based approach where
microbial interactions are assumed to abide by the
biologically-inspired Lotka Volterra Model. The param-
eters of the Lotka Volterra model, which elucidate the
interaction coefficients, are then approximated through
a Partial Least Square Regression (PLSR). With these
coefficients in place, the initial population is repop-
ulated to recreate the community abundance profile.
The accuracy metric is the Bray Curtis Dissimilarity
between the original and recreated abundance profiles.
The authors do not use any simulated data in their
results but report inferences from male and female

gut microbial communities. Their reported accuracy is
78% to 82%.

RMN [23] introduces its own model of Non-linear Reg-
ulatory OTU-triplet (NRO) model. This is a model for
three OTUs which supposedly interact with each other.
This assumption of interaction is then tested on the tem-
poral abundance profile by a hyperbolic tangent based
lack-of-fit function which they have introduced. The accu-
racy of the model is calculated based on correct inferences
and correct non-inferences as a fraction of all inferences
and non-inferences. Their reported accuracy is approx-
imately 75% on simulated data. The authors use their
method on infant gut data and infer previously known
interactions.

SPIEC-EASI [24] is a correlation-based statistical
method, which uses a Stability Approach to Regularisation
Selection (STARS) to recreate the interaction correlations
in form of a weighted undirected graph. Although this
method does not indicate the nature of the interaction
between two OTUs, it does give an idea of how close the
OTUs are. The verification has been done through simu-
lated data, and accuracy is measured with the Precision-
Recall (P-R) curves and Area Under P-R Curves (AUPR).
The authors have also presented the results from applying
their method to the American Gut Project [30] data.

LIMITS [25], yet another model based algorithm, uses
the discrete-time Lotka Volterra equations as the cen-
tral microbial interaction model in its approach. The
parameters of the Lotka-Volterra model is approximated
through linear regression with an iterative bootstrapping
approach. The verification is done through simulated data
where the authors report a specificity of 60%–80% and a
sensitivity of 70%–80%. They also analyse two individuals’
gut samples with the LIMITS algorithm. The major use of
the LIMITS algorithm is to deduce keystone species.

Gao et al. [31], in their work, use a model based
approach. They use a Lotka-Volterra model, fitted with
abundance data using non-linear least squares minimi-
sation technique. Then they use a forward step-wise
regression method with bootstrap aggregation to select
candidate models. These models are then filtered through
a Bayesian information criterion which results in multi-
ple models being selected. They aggregate the models into
a single network as the output. The algorithm is tested
on a cheese microbial community. The authors also apply
the method on the gut microbiome of children with Type
1 diabetes. They do not present accuracy numerically,
but confirm that their method was successful in inferring
experimentally confirmed microbial interactions.

Boolean Analysis [26] uses an interesting model-based
approach. The underlying biology is assumed to be form-
ing either competitive links or synergistic links. Pairs of
abundance vectors are analysed with the ESABO (Entropy
Shifts on abundance vectors under Boolean operators) to
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confirm either a competitive or a synergystic link. Using
a Jaccard index of the difference between the normalised
number of correctly and incorrectly classified links, with
their simulated data, they have achieved indexes ranging
from 0.1–0.6 on competitive links and 0.1–0.9 on syner-
gistic links. Their approach is also applied to a Human gut
data-set.

Boolean Dynamic Model [27] does not contain an
embedded biological model but assumes a binary rela-
tionship among OTUs. First, this method binarises the
abundance data with a k-means binarisation, which allows
binarisation with a threshold value, but with a stochas-
tic element. Then it uses a recapitulating approach of
updating and maintaining binary rules. The last part is
a perturbation analysis, where it analyses the effects of
removal (knock-out) or addition (forced overabundance)
on the created model. This method is effective as for the
work’s purpose of analysing Clostridium difficile infection
in the gut. The finding is that Barnesiella intestinihominis
hinders the growth of Clostridium difficile. This has been
confirmed in in-vitro experiments.

SgLV-EKF [28] model is a straightforward approach
of using the Lotka Volterra equations as the underlying
biological model. But it improves the generalised Lotka
Volterra system by introducing a Gaussian noise term,
making it stochastic. Then the LV parameters are esti-
mated using an Extended Kalman Filter (EKF), giving it
the name SgLV-EKF. This algorithm is tested on Monte-
Carlo simulated data, and shows an accuracy of 75%, with
Mean Square Error (MSE) being the indicator of accuracy.
The authors also apply the method on two mouse gut sys-
tems infected by Clostridium difficile, one being treated
with clindamycin.

SparCC [29] is a co-occurrence based method which
iteratively finds non-random co-occurrence patterns in
microbial data. One of the first methods proposed in
inferring microbial interactions, SparCC has shown a con-
siderable improvement from Pearson Correlation method.
On simulated data it has shown to achieve root mean
squared errors (RMSE) as low as 0.02. The authors also
apply the method on Human Microbiome Project data to
show its usability on real life data.

Considering the literature, there seems to be a shift
towards using model-based systems, with the support
of statistical methods, rather than depending purely on
statistical methods. An explanation of this is that, due
to the complex nature of the microbial communities,
purely mathematical methods, which ignore the under-
lying biology, would be prone to overlooking important
biological constraints. Microbial communities have bio-
logically specific behavioural dynamics, which cause non-
independence between adjacent time-steps. Hence mod-
els which take into account these behavioural dynamics
are useful in inferring the interactions.

On examining existing model based work, it is notable
that Lotka Volterra Equations or one of its adaptations
has been used in many approaches as the underlying bio-
logical model. The major reason for this use is that it
has been shown that Lotka-Volterra Model can success-
fully simulate a microbial community when applied to
different scenarios such as Lake Ecosystems [32], Human
and murine intestinal microbial systems [33, 34] or the
microbial ecosystem which occurs in the process of ripen-
ing of smear cheese [35]. The generalised Lotka Volterra
equations have the capacity to capture the growth rates
and the pairwise interactions of the OTUs, which are
the important coefficients estimated in the process of
inferring Microbial Interaction Networks (MINs).

Many of these studies have applied new methodology
to simulated data as well as real-life data. This is impor-
tant because data simulations always assume a known
biological model, and the inherent noise in a biologi-
cal system is not always present in artificially simulated
data. Our work and the majority of other works are also
guilty of using the same biological model in the infer-
ence algorithms, as well as in the data simulations. Hence
some sort of verification with real-life data is obviously
important. The problem with using real-life data for veri-
fication is that sans in-vitro studies, it is difficult to discern
whether the inferred interactions are in fact bona fide
interactions found in that microbial system. One poten-
tially useful verification strategy is to highlight the overlap
between identified interactions and interactions that were
previously known. MetaMIS [22] uses an abundance pro-
file reconstruction strategy to confirm their results. This
system of verification influenced our method.

Motivation & contributions
It was interesting to note that the above mentioned meth-
ods imply a unique solution to the problem of inferring
a microbial interaction network, given a particular abun-
dance profile. In their work addressing pitfalls in inferring
microbial dynamics, however, Cao et al. [36] demonstrate
that multiple interaction networks can lead to the same
abundance profile. This is supported by the simple sce-
nario of three OTUs with indirect interactions, as shown
in Fig. 1.

In this paper we present IMPARO (Inferring Micro-
bial interactions through PARameter Optimisation), an
algorithm for microbial interaction inference which incor-
porates biologically meaningful models for the interaction
network as well as the abundance profile.

IMPARO is the first inference method to not make the
assumption of a unique inferred solution, and to explore
multiple solutions with similar accuracy levels. Because of
the inherent noise in microbial abundance data, it is rea-
sonably assumed that small changes in accuracy do not
necessarily mean superior MINs.
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Fig. 1 Although the real interactions are A → B and B → C, through A’s influence on B, A has an indirect influence on C. When these interactions
are inferred through an abundance profile, the indirect interaction A → C may be inferred instead

It is also the first to assume an underlying biological
model for a microbial interaction network (MIN), by using
the microbial community dynamics model introduced in
[37]. The shift from statistical methods to model-based
methods was inspired by using an underlying biological
model for the Abundance Profile, and models such as gLV,
SgLV, NRO and entropy shift of competitive synergistic
links were used. Our work goes a step further in intro-
ducing an underlying biological model for the MIN, which
reduces the optimiser search space by pruning solutions
which are less feasible biologically.

It also contains a Monte Carlo approach [38] for the pur-
pose of encompassing the effect of rarer OTUs into the
inferred MIN. Most statistical methods fail to do justice
to the effects of rarer OTUs simply because their presence
is overwhelmingly shadowed by the other OTUs. And
most model based solutions use filtering processes which
favour higher ranked (in terms of abundance) OTUs
before the inference process. But in fact, the majority of
OTUs in a community are rarer OTUs [22, 39].

Our results are verified through both simulated and
real-life data. Our simulations take into account the diver-
sity of microbial communities. Community dynamics
models are used to ensure different types of communities
are included in our testing. We compare the results from
IMPARO with results reported in literature.

Key Contributions Summarised:

• Inference of interactions without the assumption of a
unique solution.

• Consideration of an underlying biological model for
the MIN.

• Using a Monte Carlo approach to ensure a better
representation of rarer OTUs.

• Verification of the algorithm on real life and
simulated data.

• Comparison of results with that of existing methods.

Results
IMPARO was used to infer interaction parameters in
both simulated and real life data. We present the overall

results in this section. Additional results and snapshots of
simulated data are available in Additional file 3.

Simulated data
Data simulation was performed using the microbial com-
munity dynamics model described above, and focuses on
heterogeneity and sparsity variation. Nominal component
N is sampled from a normal distribution N (0, 1). Initial
abundance values were sampled randomly from a uniform
distribution U(0, 1), as suggested in [37]. In this study
we are interested in examining how IMPARO handles
data-sets with varying heterogeneity and sparsity. For the
purpose of the simulated study, we used ten species.

For the heterogeneity study we use P(α) s.t. α ∈
[ 0.2, 0.4, 0.6, 0.8, 1.0], so that communities with a hetero-
geneity favouring a minority of highly influential OTUs
are considered.

For the sparsity study we use G(n, p) s.t. p ∈
[ 0.2, 0.4, 0.6, 0.8, 1.0]. This would include communities
which are very sparse (0.2) to fully connected (1.0).

The Mean Squared Error (MSE) between the ground
truth and the inferred parameters in each case as
described above are shown in Table 1. We observe that
lower p values and higher α values—highly sparse and
highly heterogeneous instances—result in lower errors.

Tested for robustness with Gaussian noise (μ = 0.0, σ =
0.01), IMPARO returns solution clusters which are within

Table 1 MSE values from the heterogeneity and sparsity study

σ = 1
P

p = 0.2 p = 0.4 p = 0.6 p = 0.8 p = 1.0

H

α = 0.2 0.05 1.32 1.36 2.55 1.99

α = 0.4 0.61 0.63 1.36 0.66 1.02

α = 0.6 0.42 0.57 1.54 1.98 1.81

α = 0.8 0.09 0.57 1.14 0.79 1.51

α = 1.0 0.34 0.28 0.71 0.73 1.28

Heterogeneity and sparsity were varied—through varying α and p respectively—to
investigate how IMPARO responded to microbial samples of varying nature. Mean
Squared Error(MSE) indicates how far the inference is from the ground truth
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mean squared errors of 0.4 - 0.5 of each other, suggesting
the solutions are robust.

Existence of multiple solutions
As we have mentioned in the literature review, it is possi-
ble to find multiple solutions for the problem of inferring
microbial interactions when the accuracy is measured
through reconstructed abundance profiles.

In Fig. 2 we present two MINs inferred from the same
abundance profile, which—after recreating the abun-
dance profile and measuring for accuracy using Bray-
Curtis metric—returns accuracies within 0.1% (79.82%
and 80.77% respectively). Compared to the true values
used in simulating the data, they indicate mean squared
errors of 0.59 and 0.58 respectively.

Tests on real life data
For this study we use the data from human faecal
microbiome samples collected from a healthy male and
a female for time spans of 15 months and 6 months
respectively [39]. This data is publicly available at MG-
RAST:4457768.3-4459735.3.

On female faecal microbiome analysing the 10 highest
ranking OTUs, our method achieves a 84.22% recon-
structed abundance profile accuracy. On the male fae-
cal microbiome OTU rankings, our method achieves
a 81.60% accuracy. It should be noted that in the
female sample, 185 time points were taken into account.
In the male sample 442 time points were consid-
ered. In both instances the sparsity of the connec-
tions were assumed to be 50% for the inference
process.

The results for the female faecal microbiome sample
showing reconstructed abundance profile accuracy val-
ues for varying numbers of highest ranking OTUs are
tabulated in Table 2.

As a further analysis, we inferred MINs at different tax-
onomic resolution levels—from Phylum to Genus. The
reconstructed abundance profile values of this study per-
formed on the female faecal microbiome is tabulated in
Table 3. The ten highest ranking OTUs were considered
in this study.

Inference of rarer OTU interactions
In order to understand how our method works for rarer
OTUs, we processed randomly selected samples from the
female faecal microbiome with at least 50% of the con-
sidered OTUs from the rare range (average abundance
lower than 0.1%). In some studies [22, 23] these rare OTUs
are discarded while favouring the most abundant OTUs.
But we show that rarer OTUs can indeed be consid-
ered in the inference process, and give satisfactory results.
Our samples provided an average accuracy (reconstructed
abundance profile accuracy) in the order of 60%.

Discussion
In this section we analyse the results obtained by
IMPARO.

Simulated data
The simulated study indicates that, IMPARO works bet-
ter with data samples with low heterogeneity and high
sparsity (low p value). When considering highly hetero-
geneous samples, we attribute the larger errors to the
difficulty in inferring near-zero values. For less sparse
data-sets this can be attributed to the difficulty in inferring
a fully connected MIN. The best case as seen in Table 1
being the most heterogeneous and sparsest instance can
be attributed to it being close to the trivial case of all
zeros. It is indeed expected to have better results in the
more sparse samples, as GAs tend to converge faster when
the dimensions of the parameter space are lower. Achiev-
ing better results on low heterogeneous and moderately
sparse samples in the simulated data explain the better
results obtained in real-life samples with the higher rank-
ing OTUs, which are more homogeneous and are assumed
to be moderately connected.

Existence of multiple solutions
Although the reconstructed abundance profile accuracy
is indicative of the prediction accuracy of the interaction
parameters, there seems to be multiple distinct solutions
for interaction matrices resulting in similar abundance
profile accuracies. Also to be noted is that these distinct
solutions are within 1–2% of reconstructed abundance

Fig. 2 An example of two distinct solutions for the same simulated data-set. The MINs corresponding to each solution, when evaluated with
reconstructed abundance profile accuracy were within 1% of each other
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Table 2 The results for the female faecal microbiome sample
showing reconstructed abundance profile accuracy values for
varying numbers of highest ranking OTUs

No of Highest Ranking OTUs Reconstructed Abundance Profile Accuracy

5 85.42%

10 84.22%

20 82.77%

30 79.93%

40 81.86%

50 82.08%

60 74.83%

69 80.11%

profile accuracy. Because of the high noise in microbial
data-sets, a solution which is only 1–2% better in recre-
ated abundance profile accuracy cannot be considered to
be a superior solution. A possible cause for multiple solu-
tions could be the optimiser being stuck at local optima.
However as the parameter space has too many dimen-
sions to permit visualisation, the methods need to rely
on results obtained from multiple initialisations. While
recognising GA is particularly challenged with overcom-
ing local optima, it is worth looking into other explana-
tions possible. One cause for multiple distinct solutions is
the possibility that indirect interactions are being inferred
incorrectly through these methods.

We may conclude that good reconstructed abundance
profile accuracy is a necessary condition for a precise pre-
diction although it is not a sufficient condition by itself.
Hence we highlight the need to widen the search for all
such instances where the reconstructed abundance profile
accuracy is higher than a threshold value. An optimisation
approach which provides multiple answers is, therefore,
important.

Tests on real life data
First we note that the inference of the male faecal micro-
biome resulted in a lower accuracy compared to the
female faecal microbiome. This might be due to the fact
that male sample covers a greater time period than the

Table 3 Inspecting the reconstructed abundance profile
accuracy with varying taxonomic resolution levels in the female
faecal microbiome

Taxonomic Resolution Level Reconstructed Abundance Profile Accuracy

Genus 76.30%

Family 84.22%

Order 87.22%

Class 87.54%

Phylum 87.63%

female sample. (442 time points over 15 months in com-
parison to 185 time points over 6 months).

Apart from the increased difficulty in predicting a
longer time series, it can also be hypothesised that the
inherent changes in the microbiome itself over a longer
period of time could be a reason for the reduced predic-
tive accuracy. Microbes, as any other community of living
organisms, change over time, which includes changes in
the nature of their interactions.

In Table 2 we observe a trend towards the accuracy
decreasing as the number of OTUs included is increased.
The reasons for this could be two-fold. Firstly, as the num-
ber of OTUs increase, the number of parameters to be
estimated grows quadratically. Secondly, as more lower
ranked—and rarer—OTUs are considered, the difficulty
level of inference increases.

We observe that higher accuracy levels correspond to
higher taxonomic ranks in Table 3. Considering that the
number of OTUs remained constant in this study, we con-
jecture that as abundances get more numerous for each
OTU with each higher taxonomy level, abundance profiles
become less disorderly. This could have resulted in bet-
ter reconstructed abundance profile accuracies for higher
taxonomic resolution levels.

Of mutualism interactions inferred by our algorithm,
some have been shown to exist in previous studies as
shown in Fig. 3. The population of bacterial families of
Prevotellaceae and Rikenellaceae has shown to increase
simultaneously in immune impaired Nod2(-/-) mice faecal
microbiome [40]. The populations of Rikenellaceae and
Verrucomicrobiaceae have been shown to simultaneously
increase in another study of mice faecal bacteria studying
diet induced obesity [41]. Both these results were inferred
from the female faecal microbiome sample.

Consideration of rarer OTUs
From the results, it could be seen that when the rarer
OTUs are taken into account, the predictive power is sig-
nificantly less. Even though the predictive power is less,
the approximately 60% reconstructed abundance profile

Fig. 3 Strong microbial interactions inferred from the female faecal
microbiome have been previously observed in in-vitro studies of
murine microbiome
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accuracy suggests promise in exploring the question of
inferring interactions for rarer OTUs further. Also, when
combined with higher ranking OTUs, rarer OTUs do not
significantly reduce the accuracy of the whole sample, as
indicative from the results in Table 2.

Analysis of errors
We consider the reasons for 20% error margin of IMPARO
to be threefold. Firstly, microbial interactions are prone
to change over time. When interactions are inferred over
multiple points covering a large time interval, this could
add a significant error. Secondly, the high dimension-
ality of the search space increases the chance of local
optima, thus resulting in higher errors. Thirdly, as the
input data is acquired through experimental means, we
expect the errors from the experimental procedures and
data collection to have contributed to the overall error.

Future work
There are several possible ways of extending IMPARO,
to alleviate some of its weaknesses. IMPARO attempts to
infer a single interaction parameter for each OTU cou-
ple for the entire time-line. We note that, as microbial
interactions are prone to change over time, it can be ben-
eficial to infer interactions over separate time intervals,
which could allow better abundance profile recreation and
exploration of interaction parameter dynamics over time.
Also IMPARO currently lags at inferring rarer OTUs,
as compared to higher ranking OTUs. Supplementing
genomic data with transcriptomic data in the inference
process can potentially increase the prediction quality. It
is also worth exploring how IMPARO can be improved to
deter the disruption of the community dynamics model by
zero and non-zero values.

Conclusions
Inferring microbial interactions will advance our under-
standing of microbial communities. We have presented
IMPARO, a microbial interaction inference algorithm
based on parameter optimisation. We have conducted
studies on simulated microbial communities and on real-
life data. IMPARO has shown to successfully infer inter-
action parameters corresponding to microbial systems in
the human body. We also emphasise the importance of
considering multiple solutions for the MINs.

Methods
In this section we present the methods used in IMPARO.

Generalised Lotka Volterra model
The Generalised Lotka-Volterra Model (GLV) is a system
of Ordinary Differential Equations. In inferring interac-
tions the GLV is used in its discrete form, where each
time point represents a sample in the temporal abundance

profile. The differential equations describe the difference
of a single OTUs abundance levels in two adjacent time
points, and how it is dependant on the growth rate and its
interaction coefficients with the other OTUs.

d
dt

xi(tk) = rixi(tk) + xi(tk)
L∑

j=1
Aijxj(tk) (1)

In Eq. 1 xi(tk) describes the relative abundance of the
ith OTU at time tk . The growth rate of the ith OTU is
described by ri. A is the overall interspecific interaction
matrix, where Aij describes the effect on the jth OTU by
the ith OTU. (Aij < 0 represents a negative effect on the
jth OTU by the ith OTU). The saturation terms have not
been included as we do not consider communities to have
known carrying capacities.

We use the above framework as it is in our implemen-
tation and add a noise term afterwards to compensate for
inherent and experimental noise in microbial data. All the
abundance values are normalised for each time point.

Community dynamics model
Introduced by Gibson et al. [37], the community dynamics
model is best described as a Mathematical Model consist-
ing of set of Matrices which represent different qualities
in microbial interactions.

A = NH ◦ Gs (2)

In Eq. 2 A is the microbial interaction matrix, N is
the nominal interspecific interaction matrix, H is the
heterogeneity matrix and G is the adjacency matrix of
the underlying ecological network. s is a scaling coeffi-
cient. The operator ◦ represents the Hadamard product
(element-wise multiplication of matrices).

N ∈ R
n×n, the nominal interspecific interaction matrix

has a normal distribution with a mean of 0, and a standard
deviation of σ 2, i.e. Nij ∼ N (0, σ 2). This matrix warrants
that the interactions are fair in the absence of an influ-
encing factor, which is introduced in the next component.
H ∈ R

n×n, the heterogeneity matrix is a diagonal matrix
with a power-law distribution, with an exponent of α, i.e.
Hii ∼ P(α). This matrix simulates the difference in the
interspecific influence levels. It is believed that in a typical
community there are a small number of highly influential
species [42]. Together with the interspecific interaction
matrix, the heterogeneity matrix assures a balanced com-
munity dynamics model. The next step is defining the
connectedness, as MINs are generally not fully connected
but sparse. G ∈ R

n×n is a binary matrix where Gij = 1
represents that the OTU i is affected by OTU j and Gij = 0
represents otherwise. This matrix follows an Erdős–Rényi
model with G(n, p) where n is the number of OTUs and
p is the probability of an edge which also represents the
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sparsity of G. (An illustrated numerical example is given
in Additional file 1.)

Bray Curtis dissimilarity
Bray-Curtis dissimilarity [43] is used in our work to deter-
mine the dissimilarity between two samples, specifically
the dissimilarity between corresponding time-points in
original and recreated abundance profiles. However a
limitation of using the Bray Curtis Dissimilarity is that
the dissimilarity metric is biased towards more abundant
species.

BCD(x(tk), x∗
(tk)) =

∑L
i=1

∣∣∣xi(tk )
− x∗

i(tk )

∣∣∣
∑L

i=1

(
xi(tk )

+ x∗
i(tk )

) (3)

BCDoverall =
∑T

k=0 BCD(x(tk), x∗
(tk))

T
(4)

where x(tk) and x∗
(tk) represent relative abundances of the

original and recreated abundance profile, at time k. xi(tk )

represents the relative abundance of the ith OTU of the
original abundance profile at time point k and x∗

i(tk )
rep-

resents the same in the recreated abundance profile. L is
the number of OTUs in the sample, while T is the total
number of time-points in the abundance profile.

Reconstructed abundance profile accuracy
The reconstructed abundance profile accuracy is a metric
of how accurately the original abundance profile can be
reconstructed with the inferred MIN. Using the original
initial conditions, x(t0), the subsequent microbial com-
munity compositions are calculated using the generalised
Lotka-Volterra model. This reconstructed microbial com-
munity abundance profile is then compared to the original
abundance profile using the Bray Curtis Dissimilarity. This
metric reflects the quality of the inferred MIN.

Kolmogorov-Smirnov test
We use the Kolmogorov-Smirnov Test as a goodness-of-fit
test to compare the empirical distribution of the inferred
MIN to a model empirical distribution which follows the
Community Dynamics Model.

Dn,m = sup
x

|F1,n(x) − F2,m(x)| (5)

where F1,n(x) and F2,m(x) are the empirical distribution
functions for the parameters of the microbial interaction
networks. Here parameters of the interaction networks
are considered as one-dimensional probability distribu-
tions. (i.e. each interaction is considered to be indepen-
dent). sup is the supremum function [44].

Inferring MINs from abundance profile
We are viewing the inference of MINs as an optimisation
problem. As our aim is to estimate the elements of the

matrix A, the overall interspecific interaction matrix, this
can specifically be described as a large parameter optimi-
sation problem, because the parameters we are estimating
is in the order of N2, where N is the number of OTUs
taken into consideration. The interaction coefficients of
the bacteria community are considered to be the param-
eters. In the simplest case, the value we are optimising
is the averaged Bray-Curtis Dissimilarity over the time
axis, for the original abundance profile and the recreated
abundance profile from generated with the parameters.
We later take the statistical similarity of the parameter
set (interaction coefficients) to the theoretical distribu-
tion of interaction coefficients according to the microbial
community model.

MINs are estimated to be sparse in nature [45]. This
information can be used to our advantage in optimising
the parameters because the adjacency matrix of a sparse
MIN contains many zero values. But what we do not know
is which parameters should be set to zero, and which
parameters should be set a non-zero value. Here we use
a Genetic Algorithm (GA) [46, 47] based approach whose
Monte-Carlo simulation of Adjacency Matrices for MINs
allow an estimated percentage of values to be set to zero,
and to reevaluate that based on the BCD, which we are
trying to minimise.

For the purpose of the GA, we consider each element
in the matrix A to be a gene, and a collection of ele-
ments to be a chromosome. Because we are expecting
sparse MINs, the chromosomes do not contain N2 num-
ber of genes. This reduces the computational complexity.
The algorithm makes mutations to the genes, which affect
both row (i), column (j), and numeric effect (Aij). The
crossover operation is a single-point crossover, where a
randomly selected part of a single chromosome is replaced
by the corresponding part of another chromosome.

The algorithm uses a two-fold fitness function where
a score is assigned to each chromosome based on the
BCD and a penalty is assigned based on the likelihood of
being compatible with the community dynamics model.
Thus, our algorithm considers underlying biological com-
patibility for both the abundance profile - in terms of
OTU propagation through the generalised Lotka Volterra
Equations, and the Adjacency Matrix for MIN with the
community dynamics model.

The first part of the score is straightforward, with the
BCD. For the penalisation step, it is important to explore
the probability distributions of the community dynam-
ics model. The matrix A’s near zero values are identified
and zeroed at first, to satisfy sparseness. The generated
matrix is checked for compliance with expected statisti-
cal properties using the Kolmogorov-Smirnov (KS) test,
and penalties are applied according to the KS statistic [44].
Thus a combination score makes sure that future gen-
erations of solutions are compatible with the underlying
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Fig. 4 The process of IMPARO includes a Genetic Algorithm, which takes into account the Bray-Curtis Dissimilarity (BCD) and the Kolmogorov-
Smirnov Test to calculate the fitness of a solution. The combined score ensures that the Microbial Interaction Networks (MINs) provided by the
algorithm are feasible solutions. XN,T is the microbial abundance profile, with N OTUs, and T time points. X0 is the microbial abundances at the initial
time point. X∗

N,T , is the recreated abundance profile. f1 and f2 respectively are the factors BCD and K-S Test scores counting towards the overall score

biological models in terms of MIN and abundance pro-
file. This process is illustrated in Fig. 4. Important code
segments are provided in Additional file 2.

The GA approach in IMPARO which uses Monte Carlo
methods for gene introduction allows rarer OTUs a better
representation in the solution.
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