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Abstract

Background: Docking large ligands, and especially peptides, to protein receptors is still considered a challenge in
computational structural biology. Besides the issue of accurately scoring the binding modes of a protein-ligand
complex produced by a molecular docking tool, the conformational sampling of a large ligand is also often
considered a challenge because of its underlying combinatorial complexity. In this study, we evaluate the impact of
using parallelized and incremental paradigms on the accuracy and performance of conformational sampling when
docking large ligands. We use five datasets of protein-ligand complexes involving ligands that could not be accurately
docked by classical protein-ligand docking tools in previous similar studies.

Results: Our computational evaluation shows that simply increasing the amount of conformational sampling
performed by a protein-ligand docking tool, such as Vina, by running it for longer is rarely beneficial. Instead, it is more
efficient and advantageous to run several short instances of this docking tool in parallel and group their results
together, in a straightforward parallelized docking protocol. Even greater accuracy and efficiency are achieved by our
parallelized incremental meta-docking tool, DINC, showing the additional benefits of its incremental paradigm. Using
DINC, we could accurately reproduce the vast majority of the protein-ligand complexes we considered.

Conclusions: Our study suggests that, even when trying to dock large ligands to proteins, the conformational
sampling of the ligand should no longer be considered an issue, as simple docking protocols using existing tools can
solve it. Therefore, scoring should currently be regarded as the biggest unmet challenge in molecular docking.

Keywords: Molecular docking, Protein-ligand docking, Protein-peptide docking, Conformational sampling, Scoring,
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Background
One of the most important biomedical applications of
structural biology is drug discovery [1–5]. Proteins are
essential components of living cells, performing structural
functions, chemical reactions, transportation, signaling,
and so on. Most of these functions involve molecular
interactions with other proteins, nucleic acids or small
molecules (i.e., ligands or peptides). The study of protein-
ligand interactions is key to understanding molecular
pathways, which in turn can provide opportunities for
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diagnosis and treatment of pathological conditions (e.g.,
using a drug to inhibit a key enzyme). Computational tools
play a central role in this field [2]. In particular, molecu-
lar docking tools are routinely used to predict the most
likely binding mode between a ligand and a protein recep-
tor (which is often referred to as geometry optimization),
or to screen thousands of ligands in search of potential
binders to a target protein (which is referred to as virtual
screening) [6, 7].
At the core of every molecular docking method lie

sampling and scoring [8–10]. The first component, con-
formational sampling, relates to the challenge of explor-
ing ligand flexibility. Most molecules involve rotatable
bonds allowing them to adopt alternative conformations
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in solution. Furthermore, the number of possible con-
formations increases exponentially with the number of
rotatable bonds. This underpins the computational chal-
lenge of exploring all these conformations and predict-
ing the best fit between a ligand and a protein’s bind-
ing site [11]. With the exception of very small ligands,
exhaustively exploring all the rotatable bonds—or degrees
of freedom (DoFs)—of a ligand is infeasible, and sev-
eral strategies have been proposed to achieve efficient
sampling [8, 12, 13].
Other considerations that we do not address in this

paper can render conformational sampling even more
computationally challenging. This is the case when con-
sidering the flexibility of the protein receptor in addition
to that of the ligand. As there might exist structural
differences between a protein’s bound and unbound con-
formations, ideally, protein flexibility should be taken into
account in molecular docking studies. However, due to
the tremendous computational cost of doing so, various
methods have been proposed that consider only limited
levels of flexibility [6]. Another important issue is the
inclusion of “explicit” water molecules in molecular dock-
ing because they sometimes mediate interactions between
ligands and receptors. Unfortunately, there is currently no
consensus on the way this should be done to improve the
results of docking tools [9, 10, 12].
The second important component of molecular dock-

ing is scoring [9, 14]. The goal of a scoring function is
to assess the “quality” of the conformations produced
by the sampling algorithm in order to guide the search
towards better binding modes and to rank conforma-
tions of different ligands (as in virtual screening). Since
numerous conformations are evaluated during sampling,
scoring functions have to be computationally efficient.
This requirement imposes a major trade-off between effi-
ciency and accuracy when designing a useful scoring
function [12, 13, 15].
A variety of docking tools is now available, relying

on various strategies for sampling and scoring, which
both affect docking performance and involve different
challenges [10, 16]. Our work has been focused on
addressing the challenges associated with sampling when
docking large ligands and even peptides. Our first step
was to develop a parallelized incremental meta-docking
approach to dock large ligands, called DINC [11, 17].
Showing promising capabilities, DINC was applied in
studies on STAT3 and STAT6 inhibition [18, 19]. After
significant software improvements, we demonstrated its
ability to dock large peptides binding MHC receptors
[20]. However, these improvements were not sufficient to
ensure that DINC could accurately dock any large ligand.
To address this issue, we have recently released a new ver-
sion of DINC. One of the most significant changes is that
DINC now mostly relies on the popular docking tool Vina

[21], instead of AutoDock4 [22], as in its past versions
[11, 20]. This latest upgrade has been made available
through the DINC 2.0 web server [23, 24].
The rationale behind the switch from AutoDock4 to

Vina is that several benchmark studies have reported
that Vina performs generally better than AutoDock4.
For example, in [25], it is shown that Vina outperforms
AutoDock4 both in terms of sampling power and scoring
power. This is especially true for the Lamarckian genetic
algorithm method in AutoDock4, which is the one that
was used in DINC [11, 20]. Similar differences in docking
performance are reported in [26], which also illustrates
the computational efficiency of Vina over AutoDock4.
This confirms what was initially stated by Vina’s authors,
i.e., improved scoring accuracy and sampling efficiency
(through multi-threading and optimization) [21].
In this paper, we report the results of our evaluation of

the sampling power of several docking protocols, includ-
ing DINC. We focus on the problem of docking large
ligands (including peptides) to protein receptors. For our
evaluation, we use five datasets of protein-ligand com-
plexes reported in related work and involving large ligands
that could not be accurately docked using Vina or other
docking tools [11, 25–28]. Although it is impossible to
fully dissociate the effects of sampling and scoring on
the output of a docking approach, there are approaches
for assessing sampling power somewhat independently of
scoring power [14, 25–28]. To do so, we check whether a
given docking approach is able to produce binding modes
that are similar to the crystal structure of a given com-
plex, whether or not these binding modes receive high
scores. The docking approaches we evaluate all involve
Vina and are based on (i) varying Vina’s exhaustiveness
(i.e., the parameter defining the amount of sampling per-
formed by Vina), (ii) running several instances of Vina
in parallel and grouping their results together, in a pro-
tocol we call Multi-Vina, and (iii) using our parallelized
incremental meta-docking method, DINC.
Our results clearly show the benefits of using paral-

lelized approaches over simply increasing Vina’s exhaus-
tiveness. Furthermore, the good performance of DINC
indicates that the incremental paradigm it relies on pro-
vides additional benefits over only using parallelism.
Overall, our study suggests that, even when docking large
ligands (i.e., ligands with more than a dozen DoFs), con-
formational sampling is rarely critical if enough comput-
ing resources are available. Although this might not be
satisfactory in the context of virtual screening applica-
tions, where computational efficiency is paramount, this
is evidence that the conformational sampling challenge
can essentially be considered solved in the context of
geometry optimization. This also highlights the fact that
scoring remains the biggest unmet challenge of molecular
docking.
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Results
In this section we present the results of our evalua-
tion of several docking methodologies that involve the
classical molecular docking tool Vina, including our
parallelized incremental meta-docking tool, DINC. We
perform redocking experiments, which consist of try-
ing to reproduce the crystal structures of challenging
protein-ligand complexes from five different datasets (see
“Methods” section). The most extensive part of our
benchmarking involves only the first four datasets
(Dhanik, Renard, LEADS and Hou) as the fifth one
(PPDbench) was published after we had performed our
study. The PPDbench dataset is involved only in a smaller
experiment reported at the end of this section. Note that,
in our redocking tasks, we only explore the flexibility of
ligands, and keep proteins rigid at all times.
To assess the quality of the results produced by a dock-

ing protocol for a specific complex, we evaluate the Root
Mean Square Deviation (RMSD) between the predicted
binding modes and the initial crystal structure of the
complex, considering all the heavy atoms of the ligand,
i.e., the so-called all-atom RMSD. The results we report
for each complex correspond to the RMSD between its
crystal structure and the so-called top-RMSD confor-
mation, i.e., the conformation produced by the docking
tool which is the closest to the crystal structure (see
“Methods” section). This allows assessing the sampling
power of a docking tool irrespective of its scoring power.
Note that we consider a crystal structure to be successfully
reproduced if this all-atom RMSD is less than 2 Å, which
is a common threshold in the docking community.

Vina
As explained in the “Methods” section, the protein-ligand
complexes we selected for this study involve large lig-
ands and cannot be reproduced using Vina with its default
parameters. The main parameter we will refer to in this
section is Vina’s exhaustiveness, which defines the amount
of sampling that is performed by Vina before it returns
its results, and whose default value is 8. Note that it is a
unitless parameter whose value should be a positive inte-
ger, and it has no maximum value. The results we have
obtained when using Vina to try and reproduce the com-
plexes from our first four datasets are listed in Tables 1–4,
under the column titled “Vina”. These results are averages
(and standard deviations) calculated from five runs. For all
complexes, the all-atom RMSD between the initial crystal
structure and the top-RMSD conformation produced by
Vina is greater than 2 Å, with an average of 5.17 Å (and
a standard deviation of 1.12 Å) across the four datasets
combined.
The strategy recommended by Vina’s creators to

improve its performance is to increase its exhaustiveness.
Therefore, we have tried to reproduce all the complexes

from our first four datasets after increasing Vina’s exhaus-
tiveness to 100. Results (averaged over five runs) are listed
in Tables 1–4, under the column titled “Vina100”. They
show limited overall improvement, with an average of
4.52 Å (and a standard deviation of 0.76 Å) across the
four datasets. For some complexes, such as 4FIV in the
Dhanik dataset, 2D5W in the Renard dataset, 3MMG in
the LEADS dataset and 2ER6 in the Hou dataset, increas-
ing the exhaustiveness yields a significant improvement
and a successful reproduction. On the other hand, for
other complexes, such as 1JQ9 in the Dhanik dataset, 1TJ9
in the Renard dataset, 3OBQ in the LEADS dataset and
1G7V in the Hou dataset, we can see a deterioration of
the results. The fact that the standard deviation associated
with these complexes decreased after increasing Vina’s
exhaustiveness suggests that this deterioration is not due
to the inherent randomness of the sampling process, but
to the fact that Vina more consistently produces “bad”
results.
A critical effect of increasing exhaustiveness is a rise

in computing time: Vina’s runtime increases roughly lin-
early with respect to its exhaustiveness. Therefore, we do
not report explicit running times (which depend on the
computing platform) and only discuss differences in com-
puting times through differences in exhaustiveness. In our
study, increasing exhaustiveness from 8 to 100 resulted
in a 12-fold increase in Vina’s running times. A legiti-
mate question is thus whether the limited improvement
in results quality achieved by increasing exhaustiveness
is worth such an increase in computing time. If one was
not deterred by the prohibitive running times, one could
increase exhaustiveness beyond 100 and hopefully get bet-
ter results. However, our experience and other studies
have shown that, when docking large ligands, increasing
Vina’s exhaustiveness only results in minor improvements
that quickly plateau [26, 27].

Multi-Vina
We aimed to make better use of computing resources than
is achieved by increasing Vina’s exhaustiveness. To that
end, we assessed a docking protocol we call “Multi-Vina”,
based on running several independent instances of Vina
(performing different non-deterministic conformational
searches) in parallel and grouping their results together.
This method generates a larger pool of binding modes
from which we extract the top-RMSD conformation.
The first protocol we evaluated involves running 12

instances of Vina, with its exhaustiveness set to 8; we call
it 12×Vina. Using 12×Vina requires as much computing
resources as using Vina100 (in terms of CPU time), but as
little time as running Vina (in terms of wall clock time).
The results (averaged over five replicates) we obtained
when trying to redock the complexes from our first four
datasets with this protocol are listed in Tables 1–4, under



Devaurs et al. BMCMolecular and Cell Biology           (2019) 20:42 Page 4 of 15

the column titled “12×Vina”. The overall average and
standard deviation across the four datasets are 3.28 Å
and 0.58 Å, respectively. As expected, 12×Vina performs
better than Vina, and interestingly it also performs sig-
nificantly better than Vina100 (see Fig. 1) despite using a
similar amount of computing resources. The only com-
plexes for which Vina100 produced a better result than
12×Vina are 1N12 and 1H6W in the LEADS dataset, as
well as 3FVH in the Hou dataset.
To assess the impact of increasing the amount of com-

puting resources allocated to Multi-Vina, we also tried to
redock the complexes from our first four datasets using
a 24×Vina protocol. Results (averaged over five repli-
cates) are listed in Tables 1–4, under the column titled
“24×Vina”. The overall average and standard deviation
across the four datasets are 3 Å and 0.49 Å, respec-
tively. This is only a small improvement when com-
pared to results obtained with the 12×Vina protocol (see
Fig. 1), especially considering that computing resources
have been doubled.
Finally, to evaluate the full potential of the Multi-Vina

method, we performed redocking experiments with a
288×Vina protocol (where 288 = 12 × 24) on our first
four datasets. However, because of the huge amount of
computing resources required and the very low expected
standard deviation, we performed only one replicate for
this experiment. Results are listed in Tables 1–4, under
the column titled “288×Vina”. The average across the four
datasets is 1.83 Å, and only 30% of complexes could not be
reproduced.

DINC
In its current implementation, DINC can be
seen as an incremental Multi-Vina approach (see

Fig. 1 Average RMSD achieved by the docking protocols. For each
docking protocol, we report the all-atom RMSD averaged over all
complexes from the first four datasets. For Vina, Vina100, 12×Vina,
24×Vina and DINC, we also report the corresponding standard
deviation

“Methods” section). Therefore, we wanted to examine
whether this additional incremental paradigm would
give DINC an advantage over the regular Multi-Vina
approach. For that, we ran five replicates of a redocking
experiment involving all the complexes from our first
four datasets. Results (averaged over the five replicates)
are listed in Tables 1–4, under the column titled “DINC”.
The overall average and standard deviation across the
four datasets are 2.34 Å and 0.32 Å, respectively. When
comparing these results to those obtained with the
24×Vina protocol, one can conclude that DINC seems
to perform better than the Multi-Vina approach. Indeed,
the improvement observed between 24×Vina and DINC
is much larger than the improvement observed between
the 12×Vina and 24×Vina protocols (see Fig. 1). This
comparison is meaningful because, in terms of computing
resources, DINC lies between a 24×Vina and a 36×Vina
protocol.
To assess the full potential of DINC, we collected all

the results from all the redocking experiments we per-
formed when comparing the various DINC protocols (see
“Methods” section). More specifically, for each complex
of our first four datasets, we looked for the minimum
RMSD among all the top-RMSD conformations gener-
ated by the replicates of the 15 DINC protocols we had
evaluated (see “Methods” section). This amounts to run-
ning a Multi-DINC, similar to the Multi-Vina, except that
different instances of DINC may use different parame-
ters. Note that all DINC protocols run 12 Vina instances,
except the final one, which runs 24 Vina4 instances (i.e.,
Vina with its exhaustiveness set to 4) as explained in the
“Methods” section. The results we obtained by com-
bining all the DINC protocols together are listed in
Tables 1–4, under the column titled “DINCbest”. The aver-
age across the four datasets is 1.55 Å, and only 17%
of complexes could not be reproduced. Note that the
amount of computing resources involved in obtaining the
results reported for DINCbest is certainly greater than
that used by the 288×Vina protocol, although a direct
comparison is not really possible. Despite this fact, we
can conclude that DINC shows a greater potential to
reproduce challenging complexes than the Multi-Vina
approach.

PPDbench dataset
As the PPDbench dataset was published after we had
performed our evaluation study [28], we used it only
in a smaller experiment to compare the sampling
capabilities of Vina and DINC’s default protocols (see
“Methods” section). We performed five replicates of a
redocking experiment in which we tried to reproduce the
crystal structures of the 89 complexes of this dataset.
The results we obtained are presented in Table 5. Vina
could not reproduce any of these complexes. The average



Devaurs et al. BMCMolecular and Cell Biology           (2019) 20:42 Page 5 of 15

all-atom RMSD (across the whole dataset) between the
initial crystal structure and the top-RMSD conformation
produced by Vina is 7.7 Å with a standard deviation of
1.01 Å. AlthoughDINCwas able to successfully reproduce
only 7 complexes, the average all-atom RMSD it achieved
across the whole dataset is 4.17 Å, with a standard devia-
tion of 0.45 Å. This represents a significant improvement
in comparison to Vina. Results obtained on this dataset,
which contains very large peptides (with up to 67 DoFs),
illustrate that, even when using DINC, more sampling is
required to reproduce such challenging complexes.
To illustrate differences between a successful and unsuc-

cessful reproduction of a specific complex, we report the
best results obtained with Vina and DINC when trying
to reproduce the protein-peptide complex with PDB code
2O9V (see Fig. 2). The peptide involved in this com-
plex is composed of 69 heavy atoms and features 15
DoFs. The all-atom RMSD between the crystal structure
and the top-RMSD conformations produced by Vina and
DINC are 5.61 Å and 1.1 Å, respectively. As the thresh-
old for success is 2 Å, the binding mode obtained with
DINC constitutes a successful reproduction of the crys-
tal structure. Figure 2 shows that only the ends of the
peptide’s conformation are not very well aligned with
the crystal structure. On the other hand, the binding
mode produced by Vina corresponds to a totally different
conformation.

Discussion
Vina’s exhaustiveness
The default value of Vina’s exhaustiveness is 8. When
we increased its value to 100, we obtained better dock-
ing results for many protein-ligand complexes, but not

all of them. One can mostly interpret the effect of rais-
ing exhaustiveness as increasing the amount of sampling
performed by Vina during a given run. Therefore, the
fact that increasing Vina’s exhaustiveness can sometimes
lead to a deterioration of the docking results might be
counter-intuitive. However, another effect of increased
exhaustiveness is an enhanced impact of the scoring func-
tion on the final output, as Vina can spend more time
improving the fit of the population of binding modes
it internally maintains. In other words, raising Vina’s
exhaustiveness increases the bias of its scoring function
on the sampling procedure. If Vina’s scoring function was
perfectly accurate, raising exhaustiveness would system-
atically yield better docking results. Unfortunately, as it is
not perfect, Vina’s scoring function sometimes drives the
sampling process away from near-native binding modes
of a complex. In other cases the scoring function simply
favors an alternative binding mode that is as valid as the
one captured by the crystal structure.
Note that two docking studies focused on protein-

peptide complexes have shown that, despite leading to
huge increases in running times, raising exhaustiveness
to large values does not produce drastic improvements
[26, 27]. Therefore, increasing Vina’s exhaustiveness is
clearly not the most effective use of computing resources
when trying to improve docking results. In addition, our
results suggest that in the context of a meta-docking
approach involving several instances of Vina such as
Multi-Vina or DINC, reducing exhaustiveness is benefi-
cial. The first benefit is that it reduces running times. The
second benefit is that it ensures more diversity in the sets
of binding modes produced by all Vina instances, as the
bias from the scoring function is reduced.

Fig. 2 Binding modes predicted by Vina and DINC for the protein-peptide complex with PDB code 2O9V. The protein receptor is represented by a
grey surface in both images. The conformation of the peptide ligand as reported in the 2O9V PDB entry is represented by blue sticks in both images.
The best result obtained when redocking this peptide with Vina is represented by yellow sticks in the left-hand side image; the all-atom RMSD
between this conformation and the blue one is 5.61 Å. The best result obtained when redocking this peptide with DINC is represented by red sticks
in the right-hand side image; the all-atom RMSD between this conformation and the blue one is 1.1 Å; only the ends of the peptide are not well
aligned with the crystal structure
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Vina’s exhaustiveness controls the number of indepen-
dent runs that it performs internally. However, other
parameters might have an impact on the achieved amount
of sampling, such as the number of steps performed by
each run, the length of the local optimization within each
step, or the optimization method itself (knowing that Vina
uses the Broyden-Fletcher-Goldfarb-Shanno algorithm).
Unfortunately, the only parameter accessible to Vina’s
users is the exhaustiveness.
The default protocol we have adopted in DINC uses

Vina4, i.e., it runs Vina with its exhaustiveness set to 4.
This allows reducing Vina’s running time by half, as com-
pared to its regular version. In addition, after performing
redocking experiments with DINC using either Vina4 or
the regular Vina, we observed no significant change in
results quality in terms of all-atom RMSD to the initial
crystal structures. For very few complexes, using Vina4
improved docking results, and for even fewer complexes,
using Vina4 deteriorated docking results. On the other
hand, using Vina2 clearly deteriorated docking results on
the four datasets. Therefore, using Vina4 seems to be a
good compromise between achieving computational effi-
ciency and obtaining docking results of good quality.

Parallelized meta-docking
As discussed in the “Results” section, running several Vina
instances in parallel and grouping their results together is
a more efficient way to improve docking results than sim-
ply increasing exhaustiveness in a single instance of Vina.
First, this kind of parallelized meta-docking approach is
computationally efficient: even if it uses the same amount
of computing resources as a long Vina run, it is much
faster in terms of wall clock time. Second, with a given
computing budget, the multi-threaded approach provides
better docking results than the single-threaded approach.
This result is most likely not specific to Vina: a paral-

lelizedmeta-docking approach using another docking tool
would probably provide similar benefits. This was demon-
strated, to some extent, by the original implementation of
DINC [11, 17], which involved AutoDock4. Therefore, to
rephrase the above statement in more general terms, it is
more effective to combine the results from several short
docking runs than extending a single docking run. This
concept should be familiar to readers of the computational
biophysics literature: better results have been obtained
from combining several short molecular dynamics simu-
lations together than running a very long simulation [29].
This paradigm has been applied in numerous fields of
computer science, such as genetic programming [30].

Parallelized incremental meta-docking
Despite achieving rather good results, the Multi-Vina
approach failed at reproducing some complexes, even
when using a very large number of threads. On the

other hand, DINC was able to reproduce some of these
complexes. In addition, when using a similar computing
budget, DINC provides better docking results than the
Multi-Vina approach. Therefore, the addition of the incre-
mental paradigm to a simple parallelized meta-docking
approach can be considered beneficial. Our understand-
ing is that this is especially true when the binding site
is not at the protein’s surface but deeper in the pro-
tein’s core. Complexes exhibiting this characteristic are
often the results of significant conformational changes
undergone by the protein receptor as a result of the
docking process in vivo [6]. Therefore, reproducing their
crystal structure might be impossible if one keeps the
protein receptor rigid while attempting to dock the lig-
and in the binding site. More specifically, because the
binding site is so constrained, it becomes difficult to com-
putationally sample conformations of the whole ligand
within it. On the other hand, docking a smaller frag-
ment of this ligand and growing it in the binding site can
be easier.
After evaluating several docking protocols in DINC,

we had to conclude that none of them systematically
performed best. Compared to the others, each proto-
col improves the docking results for some complexes
and deteriorates them for other complexes. Therefore,
we chose as a default protocol for our latest version of
DINC the one providing a good trade-off between dock-
ing accuracy and computational efficiency. This protocol
involves three rounds of incremental docking using Vina4;
it was evaluated with 24 threads. To obtain better docking
results, one can simply increase the number of threads.
In addition, if enough computing resources are available,
one can easily implement a Multi-DINC method in which
the various DINC instances would use different proto-
cols. The beauty of such a meta-docking strategy is that
it can be implemented with as many levels as comput-
ing resources permit. As illustrated by our results, in
this way, most protein-ligand complexes, even challenging
ones involving large ligands, can be reproduced.

Additional conformational sampling
The docking protocols we have presented can be com-
bined with other techniques providing additional con-
formational sampling of a protein-ligand complex. For
example, one could envision exploring the conformational
space around binding modes produced by a docking pro-
tocol using molecular dynamics (MD) simulations. As
simulating binding with MD is very expensive, MD has
mostly been used for post-docking relaxation [31–34]
or ensemble docking [35–37]. To ensure broader sam-
pling of MD simulations, several strategies have been
proposed, such as enhanced sampling (e.g., umbrella sam-
pling, metadynamics, replica exchange) [38] or acceler-
ated MD [39, 40].



Devaurs et al. BMCMolecular and Cell Biology           (2019) 20:42 Page 7 of 15

Conclusions
In this study, we have assessed the sampling power of
several docking protocols involving the popular molec-
ular docking tool Vina. More specifically, we have eval-
uated Vina with increased exhaustiveness, a protocol
involving several instances of Vina running in parallel,
called Multi-Vina, and our parallelized incremental meta-
docking approach using Vina, called DINC. For this eval-
uation we have performed redocking experiments, trying
to reproduce crystal structures of challenging protein-
ligand complexes with large ligands. The five datasets we
have used come from similar studies and contain com-
plexes that classical docking tools could not reproduce.
To try and separate as much as possible the sampling
challenge from the scoring challenge, our assessment of
docking results was based on evaluating the all-atom
RMSD between the original crystal structure of a com-
plex and the top-RMSD conformation generated by a
docking approach for this complex. The rationale was to
assess whether a docking approach could produce binding
modes that were close enough to a native conformation,
irrespective of whether the scoring function could select
these binding modes as being the most favorable ones.
Our results show that increasing Vina’s exhaustiveness

yields limited improvement, with few complexes being
reproduced using this approach. Therefore, when deal-
ing with large ligands, the increase in computing costs
incurred from raising Vina’s exhaustiveness is not worthy
of this small improvement in docking accuracy. Run-
ning several short Vina instances and grouping their
results together in a Multi-Vina approach seems to be
a better use of additional computing resources. Indeed,
using this approach yields significant improvement in
docking accuracy, with numerous complexes being suc-
cessfully reproduced. However, even when using a very
large number of threads, about a third of complexes still
remain too challenging for the Multi-Vina approach. On
the other hand, our incremental meta-docking approach,
DINC, can successfully reproduce the vast majority of
complexes studied here, albeit only when using a huge
amount of computing resources for some of these com-
plexes. In general, even when using a more reasonable
amount of computing resources, DINC performs signifi-
cantly better than theMulti-Vina approach, given a similar
computing budget.
In conclusion, this study clearly demonstrates the ben-

efits of using parallelized docking approaches, as well
as incremental docking approaches such as our meta-
docking tool DINC, to solve the sampling challenge
associated with the docking of large ligands, including
peptides. More generally, our results illustrate that con-
formational sampling is not really a challenge anymore,
contrary to what transpires from previous similar studies
[25–27]. The real challenge of molecular docking resides

on improving scoring functions. In fact, methods such
as Multi-Vina or DINC incur additional computing costs
required to counter the bias imposed by the scoring func-
tion on the sampling procedure. For now, the solution we
suggest is to use a meta-docking approach to generate a
large pool of binding modes by grouping the results from
several independent docking runs. The benefit is that this
pool of bindingmodes can then be re-scored, using a scor-
ing function that is more computationally-expensive but
more accurate than the fast functions typically used by
protein-ligand docking tools. We are planning to evaluate
such re-scoring techniques in future work, as well as the
consensus scoring paradigm [41].

Methods
DINC - docking incrementally
DINC is a parallelized meta-docking method developed
for the incremental docking of large ligands to protein
receptors. The rationale for the method and its imple-
mentation have been described in previous publications
[11, 17, 20]. The newest version of DINC, called DINC
2.0, has been made available online as a web server
[23, 24]. In short, DINC is based on a divide-and-conquer
approach enabling the docking of large ligands contain-
ing too many flexible bonds to be efficiently docked by
traditional protein-ligand docking tools. The idea behind
DINC is to incrementally dock larger and larger overlap-
ping fragments of a ligand instead of docking it all at once.
The workflow of the algorithm is illustrated in Fig. 3.
Given a ligand, DINC’s algorithm starts by selecting a

subset of the ligand’s flexible bonds to be explored, exe-
cuting the sampling and scoring of this first fragment.
Then, several docked conformations of this fragment are
selected for expansion. During this process, the selected
conformations are “grown” so as to include an additional
subset of flexible bonds from the original ligand. This is
defined by one of DINC’s parameters, which determines
how many new flexible bonds are added at each round of
docking. The expanded fragments are then used as input
for a second round of sampling and scoring. This process
is incrementally repeated until all the flexible bonds of the
original ligand have been explored.
The number of flexible bonds that are explored in

each round of docking is a key parameter for the suc-
cess of the incremental process. Although the number
of atoms and bonds composing the fragments increases
from one round to the next, the number of bonds that
are considered flexible and are effectively sampled is kept
constant. In DINC, this parameter is referred to as the
fragment size. Instead of defining the fragment size and
the number of new flexible bonds (which then automat-
ically determines the number of docking rounds), it is
possible to define the number of docking rounds and
new flexible bonds in DINC (which then automatically
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Fig. 3Workflow of the DINC algorithm on a specific example. DINC starts by selecting a small fragment of the input ligand (Fragment 0), with only k
flexible bonds, and uses it as input for the first round of docking with Vina. The best binding modes are selected for expansion: they are “grown” by
adding a small number of atoms. These new fragments are then docked in parallel using Vina. The process is repeated incrementally, until the entire
input ligand has been reconstructed and is docked in the binding site

determines the fragment size). Note that different heuris-
tics can be used to decide which bonds will be active
at each round, and which previously-explored bonds will
be kept rigid. The important point is that, by keep-
ing only a subset of bonds active at each round, DINC
enables the efficient sampling and scoring of the growing
fragments.
Another key aspect of the DINC approach is paral-

lelism. At each round of the incremental process, multiple
attempts at docking a given fragment are performed inde-
pendently in parallel. Then, all generated conformations
are grouped together, and a subset of this conformation
pool is selected for expansion and for the next docking
round. In DINC, the parameter driving this behavior is
referred to as the number of docking tasks, or simply
the number of threads. Through parallelism, the amount
of sampling at every round is greatly increased with-
out affecting the overall running time. DINC can run on
a desktop computer using multiple threads, and is also
well-suited for high-performance computing systems.
DINC is also a meta-docking approach, in the sense

that it relies on regular docking tools to perform the sam-
pling and scoring tasks at each docking round. DINC itself
only manages the parallelism, the generation of the frag-
ments and the selection of active flexible bonds. In its
original version, DINC relied solely on AutoDock4 [22].
The newest version of DINC, which we evaluate in this
study, involves the popular docking tool Vina [21]. As two
docking tools are available in DINC, it is now possible to
use separate tools for sampling and scoring tasks. More
generally, DINC is a highly customizable tool in which all
parameters can be tuned.

Docking protocols
The first docking protocol we evaluated involves only
Vina and was aimed at studying the effects of vary-
ing Vina’s exhaustiveness. This parameter defines how
long Vina will run by setting the number of independent
runs that are performed internally, starting from random

conformations of the ligand; its default value is 8. We
increased it to 100, in a docking protocol that we refer
to as Vina100, to evaluate whether this would improve
Vina’s performance. While varying Vina’s exhaustiveness
we kept its other parameters constant, but we did not
use their default value. For the num_modes parameter,
which defines the maximum number of binding modes
that Vina can produce, we used a value of 25 instead of 9.
For the energy_range parameter, which defines the maxi-
mum energy difference (in kcal/mol) allowed between the
best and worst binding modes produced by Vina, we used
a value of 10 instead of 3. Increasing the energy range
and the maximum number of binding modes returned by
Vina enabled us to rely less on its scoring function when
analyzing its output.
We call the second docking protocol we evaluated

Multi-Vina. It consists of running several independent
instances of Vina in parallel and grouping their results
together. This allows obtaining a larger set of binding
modes that can be analyzed to evaluate the success of
docking. In this context, we set Vina’s exhaustiveness to
8; we kept its num_modes and energy_range parameters
at 25 and 10, respectively. We varied the number of Vina
instances from 12 to 24, to 288 (= 12 × 24), in dock-
ing protocols that we refer to as 12×Vina, 24×Vina and
288×Vina, respectively.
We then evaluated our parallelized incremental meta-

docking tool, DINC. As DINC involves several parameters
defining its incremental process, we wanted to assess
which set of parameter values (i.e., which DINC pro-
tocol) would produce the best results. First, we varied
the fragment size using the values 6, 12, 18, 24 and 30,
while keeping all other parameters fixed: 12 threads and
3 new bonds at each docking round. Unfortunately, no
fragment size value seemed to systematically produce
the best results. Then, instead of using a fixed fragment
size (which would result in a varying number of docking
rounds based on the ligand’s number of flexible bonds)
we decided to evaluate DINC protocols in which the
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number of docking rounds was fixed (therefore making
the fragment size vary depending on the ligand). As num-
ber of docking rounds, we used the values 2, 3 and 4.
For each value, we varied the number of new bonds at
each docking round from 1 to 2 to 3. This resulted in
9 DINC protocols, each one running 12 threads. Over-
all, the protocol involving 3 rounds of docking with 3
new bonds at each round seemed to be performing best.
However, better results were obtained for numerous com-
plexes using other protocols. We do not present all these
results here. We only report results achieved by DINC
using what has now become our default protocol: 3 rounds
of docking, with 3 new bonds, using 24 threads. Note
that in all the DINC protocols we mentioned, we kept
Vina’s num_modes and energy_range parameters at 25
and 10, respectively. On the other hand, we varied its
exhaustiveness: reducing it from 8 to 4 did not seem to
affect the docking results, contrary to reducing it to 2,
which decreased docking accuracy. Therefore, to be more
computationally efficient, the default DINC protocol
now involves Vina4, i.e., Vina with its exhaustiveness
set to 4.

Evaluation methodology
To evaluate all the docking protocols we perform redock-
ing experiments, in which we try to reproduce the crystal
structure of protein-ligand complexes obtained from the
Protein Data Bank (PDB) [42]. This requires process-
ing the PDB files, following a standard procedure in the
docking field: 1) removing water molecules; 2) if sev-
eral instances of the complex are present in the PDB file,
conserving only the first instance; 3) for each complex,
separating the ligand from the protein and saving both
molecules in separate PDB files that can be given as input
to a docking tool. The preparation of the ligand and pro-
tein receptor is done using the scripts prepare_ligand4
and prepare_receptor4 from the AutoDockTools4 suite
[22]. The operations performed by these scripts are:
removing lone atoms, adding polar hydrogens, remov-
ing non-polar hydrogens, and adding Gasteiger charges.
At the beginning of the docking process performed by
DINC, similar to many other docking tools, the confor-
mation of the given ligand is randomized. The objective of
the redocking experiment is to assess whether the dock-
ing tool can produce a binding mode for the ligand in the

Table 1 Results of the redocking experiments performed on the Dhanik dataset

PDB ID DoFs atoms Vina Vina100 12×Vina 24×Vina DINC 288×Vina DINCbest

2FZC 7 18 3.51 ±0.45 3.54 ±0.20 2.80 ±0.31 2.77 ±0.24 2.76 ±0.24 2.24 2.24

1TYR 8 22 5.17 ±1.66 4.17 ±1.73 2.77 ±0.16 2.35 ±0.28 1.82 ±0.26 1.81 1.62

1V2O 10 30 3.53 ±0.07 3.27 ±0.22 2.65 ±0.23 2.58 ±0.19 2.39 ±0.18 2.17 2.17

2DRC 10 33 7.19 ±0.39 7.69 ±0.64 3.51 ±2.69 3.30 ±2.56 1.06 ±0.18 1.00 0.97

1NWL 11 31 5.31 ±1.08 5.19 ±1.82 3.03 ±0.61 2.23 ±0.50 1.49 ±0.11 1.61 1.18

1ELB 13 33 4.56 ±0.13 4.48 ±0.03 3.35 ±0.58 2.72 ±0.57 2.18 ±0.28 2.20 1.90

3GSS 18 39 5.29 ±1.09 4.96 ±0.70 3.15 ±1.12 2.73 ±0.97 3.10 ±0.20 1.74 1.61

1IS0 18 47 5.90 ±1.34 3.37 ±0.80 3.44 ±0.55 2.20 ±0.71 2.20 ±0.33 1.36 1.32

1A1B 19 39 3.03 ±0.28 3.18 ±0.47 2.40 ±0.40 1.97 ±0.53 1.97 ±0.41 1.27 1.27

1JQ9 20 47 7.99 ±2.20 9.51 ±0.21 5.41 ±1.39 5.48 ±1.77 2.90 ±0.15 2.46 2.46

4FIV 20 58 2.77 ±1.28 1.11 ±0.50 0.79 ±0.36 0.60 ±0.03 0.62 ±0.09 0.55 0.49

4ER2 22 48 3.42 ±0.45 2.40 ±0.75 2.30 ±0.60 1.98 ±0.49 1.55 ±0.09 1.35 1.33

1G7Q 22 57 3.99 ±1.35 2.01 ±1.15 2.23 ±1.01 1.48 ±0.20 1.10 ±0.07 1.11 0.98

1SLG 23 59 7.30 ±1.79 6.43 ±2.17 3.76 ±1.42 3.13 ±1.01 2.36 ±0.10 2.13 1.91

1FZK 23 68 6.64 ±0.72 3.94 ±1.84 4.26 ±1.76 1.94 ±0.62 1.20 ±0.15 1.37 1.11

2ER9 25 65 2.87 ±0.39 2.67 ±0.29 2.09 ±0.21 2.10 ±0.34 1.87 ±0.11 1.52 1.52

1FKN 29 63 4.67 ±1.27 3.56 ±0.38 3.08 ±0.14 2.83 ±0.22 2.11 ±0.28 2.08 1.75

1PZ5 29 67 5.54 ±0.81 6.28 ±0.10 4.69 ±0.73 4.49 ±0.22 3.16 ±0.29 3.90 1.87

1FO0 30 70 7.36 ±1.22 4.78 ±1.08 3.29 ±1.83 2.92 ±1.57 1.05 ±0.19 1.04 0.73

average 5.05 ±0.95 4.35 ±0.79 3.11 ±0.85 2.62 ±0.69 1.94 ±0.20 1.73 1.50

For each complex in the dataset, we first list its identifier in the protein data bank (PDB ID), its number of rotatable bonds, i.e., degrees of freedom (DoFs), and its number of
heavy atoms. Then, we list the average all-atom RMSD (over five replicates) associated with the top-RMSD conformation produced by Vina, Vina100, 12×Vina, 24×Vina, and
DINC (see the “Results” section for explanations on these docking protocols), as well as the standard deviation. Finally, we list the all-atom RMSD associated with the
top-RMSD conformation produced by 288×Vina and DINCbest
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protein’s binding site that is similar to the initial crystal
structure.
The similarity between two binding modes of a protein-

ligand complex (whether a computationally-generated
binding mode or a crystal structure) is usually assessed
by calculating the Root Mean Square Deviation (RMSD)
between them. Several ways of calculating RMSD values
have been reported in the molecular docking literature.
Here, we use the strictest definition of the RMSD by
calculating its values using all the heavy atoms of the lig-
and. This means measuring changes in the conformation,
as well as in the position and orientation of the whole
ligand within the protein’s binding site. As the protein is
kept rigid and in a fixed position during the docking pro-
cess, no alignment is required between two bindingmodes
to calculate the RMSD between them. Note that a more
lenient definition of the RMSD that is often used in related
work consists of using only the backbone atoms of the

ligand; in this case, changes in side-chain conformations
are mostly ignored.
Similar to other docking tools, DINC produces sev-

eral binding modes for a given protein-ligand complex as
a result of the docking process. Therefore, there exists
several ways to assess whether a docking tool was suc-
cessful at reproducing a given crystal structure. If users
decide to fully rely on their tool’s scoring function, they
might decide to calculate the RMSD between the initial
crystal structure and the binding mode that receives the
best score, i.e., the so-called top-scoring conformation. A
common threshold used to determine whether the crys-
tal structure was successfully reproduced is 2 Å. Instead
of considering only the top-scoring conformation, users
can also check whether any of a small number of bind-
ing modes among those with the best scores have an
RMSD of less than 2 Å from the crystal structure. In
this study, as we want to evaluate the sampling power of

Table 2 Results of the redocking experiments performed on the Renard dataset. Description as in Table 1

PDB ID DoFs atoms Vina Vina100 12×Vina 24×Vina DINC 288×Vina DINCbest

2FIB 10 30 2.03 ±0.12 1.34 ±0.24 1.19 ±0.39 1.31 ±0.45 0.81 ±0.13 0.70 0.70

2PQ2 11 26 4.45 ±0.63 4.20 ±0.59 3.52 ±0.61 3.12 ±0.06 3.02 ±0.08 2.66 1.76

1SUA 11 27 2.88 ±0.92 1.85 ±0.29 1.90 ±0.25 1.74 ±0.13 0.98 ±0.10 1.20 0.96

1NVR 12 29 3.24 ±1.02 3.17 ±1.11 1.14 ±0.16 1.20 ±0.19 1.20 ±0.18 0.74 0.74

2FNX 14 29 5.04 ±0.31 4.74 ±0.39 3.92 ±0.36 2.89 ±0.63 2.83 ±0.25 1.60 1.60

1TJ9 14 30 3.66 ±1.17 5.73 ±0.24 2.32 ±0.18 2.13 ±0.13 2.02 ±0.10 1.53 1.53

2DQK 14 33 4.24 ±0.44 3.92 ±0.16 3.51 ±0.34 3.41 ±0.39 2.42 ±0.37 2.00 2.00

1GYB 14 36 2.96 ±1.34 4.22 ±0.39 1.74 ±0.18 1.64 ±0.85 1.02 ±0.15 0.81 0.81

1TK4 15 30 6.66 ±1.25 7.70 ±0.39 4.83 ±0.54 3.46 ±0.92 2.87 ±0.75 2.03 1.78

1NX0 15 32 4.20 ±0.86 3.61 ±0.22 3.45 ±0.03 3.26 ±0.09 3.05 ±0.35 1.21 1.21

1BE9 15 35 4.70 ±1.84 3.41 ±1.86 1.38 ±0.23 1.21 ±0.27 1.25 ±0.23 0.85 0.85

1PAU 16 35 3.22 ±0.10 1.68 ±0.13 1.46 ±0.13 1.47 ±0.17 1.22 ±0.10 1.14 1.01

1IHJ 16 39 4.14 ±1.14 4.77 ±0.42 2.43 ±0.69 2.55 ±0.66 1.83 ±0.25 1.49 1.49

1JQ8 16 40 7.05 ±1.70 6.31 ±0.80 4.55 ±0.63 4.22 ±0.13 1.97 ±0.12 1.89 1.68

2HPL 17 41 3.35 ±0.67 2.60 ±0.40 1.78 ±0.34 1.51 ±0.36 1.52 ±0.35 0.98 0.98

2GNS 18 41 2.53 ±1.17 2.09 ±0.17 1.98 ±0.07 1.64 ±0.30 1.58 ±0.20 1.15 1.15

2D5W 19 37 4.78 ±2.61 1.43 ±0.10 1.38 ±0.08 1.33 ±0.06 1.16 ±0.12 1.14 1.14

1TJK 19 41 8.50 ±0.91 9.35 ±0.72 7.31 ±0.15 6.79 ±1.09 4.28 ±0.15 1.22 1.22

1JWG 19 43 4.95 ±0.51 6.03 ±1.12 3.38 ±0.75 3.38 ±0.76 2.43 ±0.08 2.16 1.78

2DUJ 19 43 3.40 ±0.51 2.99 ±0.27 2.21 ±0.34 2.28 ±0.14 2.24 ±0.06 1.65 1.65

1TG4 19 46 8.97 ±0.37 8.66 ±0.20 7.82 ±0.25 7.78 ±0.11 3.50 ±0.79 0.77 0.77

1SP5 20 46 4.23 ±1.13 5.29 ±0.16 1.69 ±0.65 1.34 ±0.13 1.14 ±0.07 1.01 1.01

1W9E 20 52 5.91 ±1.61 4.59 ±2.54 3.19 ±1.29 2.23 ±0.95 2.32 ±0.54 1.54 1.54

1FCH 21 45 3.82 ±1.32 5.00 ±1.76 1.93 ±0.35 2.03 ±0.60 1.85 ±0.45 1.07 1.07

1BHX 21 46 4.47 ±0.52 4.38 ±0.85 3.36 ±0.66 2.60 ±0.35 2.86 ±0.56 1.33 1.33

2H9M 22 41 4.05 ±0.99 3.33 ±0.62 2.81 ±0.24 2.25 ±0.65 2.46 ±0.03 1.43 1.35

average 4.52 ±0.97 4.32 ±0.62 2.93 ±0.38 2.64 ±0.41 2.07 ±0.25 1.36 1.27



Devaurs et al. BMCMolecular and Cell Biology           (2019) 20:42 Page 11 of 15

the docking protocols, we calculate the RMSD between
the crystal structure and all the produced binding modes,
irrespective of their score, and we determine which one
is the closest to the crystal structure, i.e., the so-called
top-RMSD conformation. We consider that a given crystal
structure has been successfully reproduced if the top-
RMSD conformation is less than 2 Å away from it. This
is common practice in the molecular docking field, which
allows evaluating the sampling power of a docking tool
independently (to some extent) of its scoring power.

Datasets of protein-ligand complexes
For this study, we define five datasets containing protein-
ligand complexes involving large ligands, some being pep-
tides. These datasets comprise complexes involved in pre-
vious evaluations of molecular docking tools performed
by several research groups. We restrict our datasets to
complexes that some of these tools cannot reproduce. Our
goal is to perform an indirect comparison between these
tools and our own docking tool, DINC, by showing that it
can reproduce most of these complexes.

Table 3 Results of the redocking experiments performed on the LEADS dataset. Description as in Table 1

PDB ID DoFs atoms Vina Vina100 12×Vina 24×Vina DINC 288×Vina DINCbest

1UOP 11 32 2.42 ±1.56 1.61 ±0.14 1.07 ±0.10 1.01 ±0.12 1.09 ±0.14 0.62 0.62

2HPL 17 41 2.41 ±0.26 2.41 ±0.43 1.73 ±0.21 1.40 ±0.11 1.62 ±0.33 1.08 1.08

4V3I 18 41 5.44 ±0.67 4.68 ±0.18 4.28 ±0.36 3.58 ±0.90 3.90 ±1.03 2.00 2.00

3OBQ 19 62 4.91 ±2.12 7.87 ±0.47 4.33 ±0.73 4.08 ±0.91 2.67 ±1.02 1.29 1.29

3LNY 20 44 4.26 ±1.31 7.44 ±4.81 2.04 ±0.16 1.88 ±0.07 1.86 ±0.06 1.37 1.37

3D1E 20 45 5.41 ±2.41 5.48 ±2.33 2.30 ±0.61 2.26 ±0.41 1.98 ±0.34 1.27 1.27

2W0Z 20 67 4.16 ±1.47 4.68 ±0.05 3.31 ±1.12 2.64 ±0.38 2.67 ±0.64 1.10 1.10

1SVZ 21 55 3.20 ±1.05 1.70 ±0.51 1.38 ±0.22 1.44 ±0.20 1.40 ±0.04 0.79 0.79

3Q47 22 53 2.75 ±1.55 1.13 ±0.16 1.01 ±0.12 0.95 ±0.09 0.92 ±0.08 0.76 0.76

3IDG 23 53 4.65 ±0.39 2.92 ±0.86 3.09 ±0.16 2.63 ±0.46 1.87 ±0.14 1.75 1.57

3UPV 24 55 4.56 ±0.69 3.64 ±1.57 1.88 ±0.56 1.36 ±0.27 2.33 ±0.80 1.14 1.14

3CH8 24 66 2.70 ±2.29 1.00 ±0.26 0.89 ±0.22 0.86 ±0.13 0.70 ±0.04 0.67 0.60

4Q6H 25 51 8.34 ±0.45 7.89 ±0.23 4.99 ±0.89 5.19 ±1.38 3.93 ±0.20 3.72 1.81

3NJG 26 58 5.01 ±2.77 1.46 ±0.16 1.25 ±0.13 1.25 ±0.09 1.09 ±0.18 1.07 0.99

1ELW 26 60 4.28 ±1.38 4.83 ±0.46 3.42 ±0.29 2.93 ±0.46 3.13 ±0.29 2.31 2.31

4QBR 27 53 2.72 ±0.53 2.42 ±0.44 1.50 ±0.26 1.51 ±0.20 1.37 ±0.16 1.16 1.16

1N7F 27 62 12.46 ±0.79 12.48 ±0.71 9.92 ±1.97 9.96 ±0.39 6.89 ±0.56 6.38 3.77

3MMG 29 60 5.28 ±2.93 1.72 ±0.37 1.58 ±0.35 1.86 ±0.29 1.16 ±0.21 1.16 1.16

2O02 32 68 4.98 ±0.70 5.06 ±0.73 4.32 ±0.65 4.36 ±0.34 2.83 ±0.25 3.18 1.97

3BRL 32 68 7.23 ±0.34 7.15 ±1.27 5.03 ±0.33 4.49 ±0.79 3.36 ±0.57 2.92 1.46

2W10 32 90 8.17 ±2.77 7.52 ±1.32 3.83 ±0.97 3.21 ±0.25 3.16 ±0.69 2.15 2.15

4EIK 34 86 4.06 ±0.96 1.94 ±0.53 1.75 ±0.44 1.81 ±0.25 1.35 ±0.22 0.98 0.98

4DS1 35 77 7.34 ±2.16 7.32 ±2.39 4.49 ±1.89 5.14 ±0.31 1.35 ±0.19 1.17 1.17

1NTV 39 89 5.84 ±0.82 5.67 ±1.22 4.03 ±1.08 4.07 ±0.21 3.92 ±0.58 1.85 1.85

1N12 40 85 10.04 ±2.88 2.75 ±1.21 4.39 ±1.65 3.77 ±1.72 4.05 ±1.57 1.84 1.44

2QAB 41 79 6.22 ±0.74 5.79 ±0.62 4.75 ±0.25 4.52 ±0.37 5.16 ±0.28 3.90 3.90

3DS1 41 95 6.19 ±0.12 5.94 ±0.48 5.15 ±0.32 4.34 ±1.37 3.65 ±1.02 1.73 1.73

1H6W 42 85 11.98 ±0.94 8.19 ±3.88 9.68 ±0.93 10.12 ±0.15 1.57 ±0.20 2.38 1.57

3BFW 43 89 6.52 ±1.72 2.19 ±1.44 2.98 ±0.89 2.64 ±1.18 3.49 ±1.06 1.59 1.41

2XFX 43 90 6.22 ±1.44 4.56 ±1.26 4.30 ±0.99 3.02 ±0.95 2.52 ±0.67 1.72 1.11

4DGY 44 98 6.88 ±0.90 4.96 ±1.13 3.27 ±1.09 4.29 ±0.39 3.39 ±0.96 1.93 1.93

4J8S 50 102 6.04 ±1.36 6.03 ±0.41 5.10 ±0.31 4.72 ±0.23 4.54 ±0.38 4.45 2.96

2B9H 52 101 8.20 ±3.14 8.49 ±2.58 5.39 ±0.48 4.70 ±0.35 4.13 ±0.40 3.56 3.56

average 5.78 ±1.38 4.82 ±1.05 3.59 ±0.63 3.39 ±0.48 2.70 ±0.46 1.97 1.64
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Dhanik dataset. Our first dataset is a small subset of the
one on which the original version of DINC was evaluated
[11, 17]. The complete dataset contains 73 protein-ligand
complexes extracted from an old version of the PDB-
bind database [43]. Results in [11, 17] show that DINC
and AutoDock4 could reproduce the crystal structures of
only 31 of these complexes, when considering top-RMSD
conformations. The remaining 42 complexes could have
thus been considered challenging. However, after running
redocking experiments with the most recent version of
Vina (using its default parameters), we realized that some
of these complexes were actually not very challenging.
Therefore, we removed from the dataset all the complexes
that Vina could reproduce, when considering top-RMSD
conformations. We also discarded the complexes featur-
ing more than one ligand in the protein’s binding site.

Eventually, we obtained a dataset containing 19 com-
plexes, with ligands having between 7 and 30 rotatable
bonds (see Table 1).

Renard dataset. Our second dataset is a subset of a
meta-dataset compiled from previous studies with the
objective of assessing the ability of Vina to dock small
peptides [27]. The original meta-dataset contains 47 com-
plexes involving peptides with up to five amino acid
residues. Results in [27] show that Vina could produce
top-RMSD conformations that were similar to the crystal
structure of only about half of these complexes. How-
ever, since these results were based on RMSD values
calculated only for backbone atoms of the peptides, we
performed our own redocking experiments to evaluate
which complexes were really challenging. After discarding

Table 4 Results of the redocking experiments performed on the Hou dataset. Description as in Table 1

PDB ID DoFs atoms Vina Vina100 12×Vina 24×Vina DINC 288×Vina DINCbest

2W5G 7 38 5.29 ±2.11 3.84 ±2.23 2.20 ±0.72 1.46 ±0.55 1.09 ±0.05 0.84 0.84

3EB1 8 30 5.60 ±0.16 5.72 ±0.03 4.68 ±0.44 4.52 ±0.17 3.01 ±0.57 4.23 1.96

2BVR 9 31 5.78 ±0.87 4.79 ±0.35 4.08 ±0.60 3.69 ±0.61 3.55 ±0.57 3.03 1.90

3AAQ 9 42 2.30 ±0.21 1.76 ±0.70 1.56 ±0.50 0.96 ±0.47 2.07 ±0.10 0.55 0.55

3UIL 10 14 7.78 ±0.59 8.78 ±0.58 6.22 ±0.29 6.30 ±0.15 2.79 ±0.21 3.05 2.56

3USX 12 16 6.78 ±0.25 6.92 ±0.17 5.84 ±0.42 5.45 ±0.61 2.89 ±0.84 2.72 2.05

1G7V 12 29 3.36 ±0.58 5.36 ±0.36 2.34 ±0.41 2.37 ±0.24 2.43 ±0.27 1.87 1.72

3DRI 13 42 8.13 ±0.91 8.51 ±1.17 5.46 ±1.09 4.15 ±0.37 3.46 ±0.45 3.90 2.94

3EAX 14 48 5.93 ±0.63 6.16 ±0.43 5.29 ±0.19 5.20 ±0.45 4.85 ±0.23 4.41 4.29

3R0Y 15 50 4.46 ±0.52 4.86 ±0.05 4.07 ±0.10 3.93 ±0.04 3.85 ±0.10 3.89 3.34

4FNN 16 20 3.87 ±1.01 4.23 ±0.53 2.46 ±0.49 2.31 ±0.40 1.75 ±0.23 1.42 1.42

2BVS 17 42 4.62 ±1.10 4.11 ±0.16 3.31 ±0.60 3.29 ±0.70 3.01 ±0.69 2.06 2.06

3FVH 18 53 4.87 ±0.20 1.46 ±0.20 4.21 ±0.10 3.61 ±0.44 3.07 ±0.29 2.90 2.23

1SH9 18 56 4.73 ±3.16 1.63 ±0.37 1.55 ±0.41 1.39 ±0.17 1.25 ±0.07 0.82 0.82

1STR 20 64 2.73 ±0.86 3.29 ±1.13 2.06 ±0.30 1.74 ±0.24 1.85 ±0.12 1.37 1.37

2CE9 20 68 5.46 ±1.76 6.96 ±0.26 2.70 ±2.05 2.46 ±1.72 1.28 ±0.15 0.86 0.86

3GX0 21 50 5.27 ±0.76 4.12 ±0.79 2.45 ±0.71 2.64 ±1.18 1.76 ±0.10 1.63 1.63

3JZH 21 54 7.13 ±0.31 8.23 ±0.89 6.57 ±0.13 6.61 ±0.12 5.15 ±1.53 4.93 2.48

4E67 22 68 2.54 ±0.86 2.62 ±0.18 1.08 ±0.30 1.12 ±0.21 1.24 ±0.25 0.63 0.63

3H89 23 81 5.18 ±0.91 5.81 ±0.10 3.46 ±0.29 4.00 ±0.98 1.64 ±0.31 2.71 1.33

2HKF 25 70 5.69 ±1.30 3.16 ±0.78 2.62 ±0.88 1.99 ±0.67 1.67 ±0.30 1.25 1.25

4GAH 27 71 6.17 ±2.24 3.34 ±0.74 3.22 ±0.81 2.92 ±0.66 2.08 ±0.24 1.51 1.51

3IFL 27 76 4.35 ±0.32 3.96 ±0.13 3.08 ±0.47 2.33 ±0.31 2.32 ±0.06 1.72 1.72

4EZX 28 72 5.56 ±0.94 6.20 ±0.18 5.27 ±0.68 5.29 ±0.18 3.32 ±0.58 3.29 2.23

3URI 28 79 5.17 ±1.22 2.58 ±0.91 2.15 ±0.28 1.84 ±0.30 1.76 ±0.15 1.45 1.45

1BAI 29 75 3.79 ±1.94 2.20 ±0.25 1.78 ±0.32 1.84 ±0.14 1.74 ±0.09 1.36 1.36

2ER6 30 78 5.75 ±1.84 1.58 ±0.06 2.20 ±0.81 1.65 ±0.16 1.50 ±0.11 1.26 1.26

1M4H 31 76 4.98 ±2.53 2.92 ±0.64 2.29 ±0.35 2.19 ±0.64 2.08 ±0.16 1.51 1.51

average 5.12 ±1.07 4.47 ±0.51 3.36 ±0.53 3.12 ±0.46 2.44 ±0.32 2.18 1.76
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Table 5 Results of the redocking experiments performed on the PPDbench dataset

PDB ID DoFs atoms Vina DINC PDB ID DoFs atoms Vina DINC

2HO2 13 71 7.58 ±1.30 2.64 ±0.41 4B4N 40 110 8.82 ±0.95 5.21 ±0.61

2O9V 15 69 6.07 ±0.29 1.98 ±0.77 3AWR 41 84 8.25 ±0.74 4.94 ±0.37

3OBQ 19 62 7.50 ±0.70 2.52 ±0.93 2PEH 41 88 7.13 ±1.10 4.54 ±0.15

1CKA 22 65 6.78 ±0.18 2.68 ±0.49 2XVC 41 99 10.67 ±1.56 2.53 ±0.35

2A25 23 60 10.65 ±1.54 1.45 ±0.98 3GYT 42 81 7.14 ±0.47 5.63 ±0.30

2R9Q 24 59 5.93 ±0.72 2.25 ±0.22 1H6W 42 85 11.13 ±2.14 2.65 ±1.68

4H4F 25 72 3.75 ±0.20 1.05 ±0.03 2O4J 42 87 8.18 ±0.95 4.82 ±0.56

1SSH 25 76 8.31 ±1.04 5.04 ±0.30 4GQ6 42 99 6.98 ±1.36 4.65 ±0.28

3TJV 26 63 5.45 ±1.78 1.43 ±0.05 2XRW 42 100 9.19 ±1.24 6.26 ±0.67

3ERY 27 70 6.26 ±1.55 3.10 ±0.38 3DS4 42 103 7.85 ±0.82 4.79 ±0.36

3I5R 27 70 5.71 ±0.24 3.67 ±0.63 2PUY 43 80 8.94 ±2.46 3.94 ±0.30

1MFG 29 71 7.27 ±1.78 3.88 ±0.13 2P1T 43 86 5.86 ±1.09 4.05 ±0.74

1YWO 29 80 6.89 ±1.66 3.50 ±0.23 1D4T 44 90 14.65 ±1.08 4.81 ±0.87

1QKZ 30 62 5.63 ±1.71 2.82 ±0.39 2QSE 45 89 7.21 ±0.68 5.25 ±0.23

1K5N 30 64 4.66 ±0.99 2.84 ±0.63 1RXZ 45 97 7.35 ±0.81 3.53 ±0.91

1OAI 30 66 7.75 ±0.28 3.03 ±0.43 2BBA 45 115 7.18 ±0.82 5.08 ±0.35

1U00 30 71 7.01 ±1.08 2.20 ±0.15 1NQ7 46 90 8.06 ±0.41 5.46 ±0.30

1RST 30 76 7.16 ±0.36 4.37 ±0.14 3KMR 46 90 7.02 ±0.86 5.36 ±0.36

4GXL 30 81 7.41 ±1.01 2.69 ±0.20 3VTC 46 91 8.59 ±0.91 5.63 ±0.11

3RM1 31 71 6.23 ±0.88 3.21 ±0.63 2P54 46 97 7.40 ±0.75 5.14 ±0.34

2D0N 32 70 9.69 ±2.48 3.56 ±0.54 2QOS 46 97 7.64 ±0.37 5.89 ±0.33

2VR3 32 71 12.06 ±2.67 6.30 ±1.43 3RQG 47 92 7.09 ±0.29 5.34 ±0.24

4HTP 32 85 9.02 ±0.27 4.52 ±0.88 4ERY 47 100 7.19 ±0.33 3.61 ±0.59

2CE8 33 70 7.19 ±0.35 4.59 ±0.66 2FTS 47 104 8.04 ±0.42 4.54 ±0.24

4F1Z 33 72 15.69 ±2.99 2.88 ±0.17 1OW6 48 94 9.95 ±0.52 7.23 ±0.39

2ZJD 33 77 2.77 ±0.53 1.79 ±0.07 3C3R 48 104 8.94 ±1.47 5.87 ±0.34

3W1B 33 85 9.93 ±0.52 5.21 ±1.19 3L0E 49 98 7.08 ±1.09 5.22 ±0.10

3V2X 34 84 10.65 ±0.96 2.56 ±0.46 3OLF 49 99 6.51 ±0.57 5.49 ±0.27

3PTL 35 71 10.92 ±2.82 3.99 ±0.19 1T08 49 115 8.98 ±0.81 5.36 ±0.97

1X2R 35 74 6.51 ±0.95 4.12 ±0.40 1NLN 50 94 7.41 ±0.88 2.96 ±0.85

3KUS 35 83 7.28 ±1.99 2.53 ±0.57 4J8S 50 102 6.63 ±0.61 4.79 ±0.18

3U9Q 36 69 5.64 ±1.24 3.34 ±0.35 2FMF 50 107 9.26 ±0.85 6.54 ±0.33

1T7R 36 77 5.21 ±0.30 3.15 ±0.47 2FFF 50 109 7.98 ±0.52 4.72 ±0.77

2QBX 36 80 4.02 ±0.80 2.47 ±0.56 3QIS 50 109 5.91 ±0.44 3.85 ±0.49

1NX1 36 81 5.57 ±0.65 4.01 ±0.47 2PUX 50 111 9.27 ±1.71 5.18 ±0.28

2W2U 36 91 6.17 ±1.49 3.49 ±0.49 2CCH 51 102 8.26 ±0.45 4.94 ±0.81

1UJ0 37 74 7.02 ±1.10 3.89 ±0.40 2WHX 51 109 8.41 ±0.69 4.98 ±0.72

2HT9 37 85 7.72 ±0.75 5.74 ±0.23 2VWF 51 115 8.28 ±1.55 5.65 ±0.22

1EG4 37 106 8.97 ±0.86 4.64 ±0.26 2B9H 52 101 9.73 ±2.17 4.53 ±0.53

2FVJ 38 81 6.83 ±0.44 5.13 ±0.24 3UP3 53 108 8.75 ±0.83 6.28 ±0.19

3LL8 38 85 3.70 ±1.01 1.98 ±0.15 3H1Z 53 136 9.89 ±2.02 5.04 ±0.33

1T4F 38 86 7.52 ±0.81 5.27 ±0.13 1PZL 55 114 7.79 ±0.62 5.62 ±0.31

1TFC 39 81 7.02 ±0.64 4.95 ±0.28 4K0U 62 130 8.31 ±0.74 5.90 ±0.49

2DYP 39 81 3.70 ±0.91 1.71 ±0.12 2V8Y 67 129 9.10 ±1.42 6.09 ±0.36

1NTV 39 89 6.20 ±0.87 3.27 ±0.69 average 7.7 ±1.01 4.17 ±0.45

For each complex in the dataset, we first list its identifier in the protein data bank (PDB ID), its number of rotatable bonds, i.e., degrees of freedom (DoFs), and its number of
heavy atoms. Then, we list the average all-atom RMSD (over five replicates) associated with the top-RMSD conformation produced by Vina and DINC using their defaults
parameters
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the complexes that already belonged to our first dataset,
we were left with a set of 26 complexes (involving peptides
having between 10 and 22 rotatable bonds) that Vina was
not able to reproduce, even when considering top-RMSD
conformations (see Table 2).

LEADS dataset. Our third dataset is a subset of LEADS-
PEP, which currently contains 53 protein-peptide com-
plexes involving peptides composed of 3 to 12 residues
[26]. LEADS-PEP was created as an unbiased benchmark
dataset for researchers wanting to assess the efficacy of
molecular docking tools on peptides. It was used to eval-
uate four protein-ligand docking tools: GOLD, Surflex-
Dock, AutoDock4 and Vina [26]. Results show that, in
spite of not being specifically aimed at peptides, these four
tools were able to perform quite well with small peptides
composed of 3 or 4 residues. However, they all showed
poor performance on larger peptides, even when con-
sidering top-RMSD conformations, and despite the fact
that reported RMSD values were calculated using only
backbone atoms. Therefore, we removed from the dataset
complexes containing small peptides, as well as complexes
already present in previous datasets. The resulting dataset
contains 33 complexes involving peptides having between
11 and 52 rotatable bonds (see Table 3).

Hou dataset. Our fourth dataset is a small subset of an
extensive dataset used to evaluate ten molecular docking
tools, including AutoDock4 and Vina [25]. The complete
dataset contains 2002 protein-ligand complexes extracted
from a recent version of the PDBbind database [44].
Results in [25] clearly show that all docking tools struggle
with neutral ligands and large ligands, such as peptides.
Interestingly, a set of 72 complexes could not be repro-
duced by any of the tested docking tools, even when
considering top-RMSD conformations, and are, therefore,
ideal candidates for our evaluation of challenging protein-
ligand complexes. After discarding from this small set
complexes involving more than one ligand in the bind-
ing site and complexes involving ligands with less than 7
rotatable bonds, we were left with a dataset containing 28
complexes involving ligands with 7 to 31 rotatable bonds
(see Table 4).

PPDbench dataset. Our fifth dataset was published after
we carried out our benchmarking. Therefore, we used it
only for a smaller experiment to compare results obtained
with Vina and DINC using their default parameters. The
original PPDbench dataset was involved in a study com-
paring the performance of six molecular docking tools:
ZDOCK, FRODOCK, Hex, PatchDock, ATTRACT and
pepATTRACT [28]. It was created by combining two
smaller datasets published in previous studies, and con-
tains 133 protein-peptide complexes composed of 9 to 15

amino acids. After discarding from the original dataset the
complexes involving more than one ligand in the bind-
ing site, we obtained a dataset containing 89 complexes
involving peptides with 13 to 67 rotatable bonds (see
Table 5).

Evaluation platform
We ran all our docking jobs on the Comet cluster,
from the San Diego Supercomputer Center, through an
Extreme Science and Engineering Discovery Environment
(XSEDE) allocation [45]. Comet features Intel next-gen
processors with AVX2, Mellanox FDR InfiniBand inter-
connects and Aeon storage. Its compute nodes consist of
Intel Xeon E5-2680v3 processors, 128 GB DDR4 DRAM,
and 320 GB of SSD local scratch memory. Each node con-
tains 24 cores, with a clock speed of 2.5 GHz, a flop speed
of 960 GFlop/s and a memory bandwidth of 120 GB/s.
Abbreviations
DINC: Docking incrementally; DoF: Degree of freedom; MD: Molecular
dynamics; PDB: Protein data bank; RMSD: Root mean square deviation
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