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Abstract
Background: Bcl-2 homology domain (BH) 3-only proteins are pro-apoptotic proteins of the Bcl-
2 family that couple stress signals to the mitochondrial cell death pathways. The BH3-only protein
Bid can be activated in response to death receptor activation via caspase 8-mediated cleavage into
a truncated protein (tBid), which subsequently translocates to mitochondria and induces the
release of cytochrome-C. Using a single-cell imaging approach of Bid cleavage and translocation
during apoptosis, we have recently demonstrated that, in contrast to death receptor-induced
apoptosis, caspase-independent excitotoxic apoptosis involves a translocation of full length Bid (FL-
Bid) from the cytosol to mitochondria. We induced a delayed excitotoxic cell death in cultured rat
hippocampal neurons by a 5-min exposure to the glutamate receptor agonist N-methyl-D-
aspartate (NMDA; 300 μM).

Results: Western blot experiments confirmed a translocation of FL-Bid to the mitochondria
during excitotoxic apoptosis that was associated with the release of cytochrome-C from
mitochondria. These results were confirmed by immunofluorescence analysis of Bid translocation
during excitotoxic cell death using an antibody raised against the amino acids 1–58 of mouse Bid
that is not able to detect tBid. Finally, inducible overexpression of FL-Bid or a Bid mutant that can
not be cleaved by caspase-8 was sufficient to induce apoptosis in the hippocampal neuron cultures.

Conclusion: Our data suggest that translocation of FL-Bid is sufficient for the activation of
mitochondrial cell death pathways in response to glutamate receptor overactivation.

Background
Excitotoxic neuron death has been implicated in the
pathogenesis of ischemic, traumatic, and seizure-induced
brain injury [1]. When glutamate receptor overactivation

is intense, cell death is necrotic and characterized by a dis-
turbance of cellular ion and volume homeostasis, leading
to mitochondrial membrane potential (ΔΨm) depolariza-
tion, free radical production, ATP depletion and early
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plasma membrane leakage [2-5]. However, when gluta-
mate receptor overactivation is subtle, mitochondria tran-
siently recover their energetics, and a delayed cell death
may result [3,6,7]. Under these conditions, excitotoxic
neuron death is associated with the release of the pro-
apoptotic factors cytochrome-C (cyt-C) and Apoptosis-
Inducing Factor (AIF) from mitochondria [6-10].

The mechanisms of cyt-C and AIF release during excito-
toxic neuron death remain unresolved. In the evolution-
ary conserved apoptosis pathway, the release of cyt-C
requires the pro-apoptotic Bcl-2 family members Bax or
Bak [11]. Both proteins are believed to form megachan-
nels in the outer mitochondrial membrane large enough
to release intermembrane space proteins [12]. In order to
cause this increased permeability, Bax and Bak undergo a
conformational change and insert into the outer mito-
chondrial membrane [13,14]. In non-apoptotic cells, acti-
vation of Bax or Bak is inhibited by anti-apoptotic Bcl-2
family members such as Bcl-2 and Bcl-xL. In apoptotic
cells, the transcriptional induction or post-translational
activation of Bcl-2-homolgy domain-3 (BH3)-only pro-
teins overcomes this inhibition and triggers the activation
of Bax and Bak and the release of cyt-C [15,16]. The
release of AIF in excitotoxicity and apoptosis is likewise
inhibited by Bcl-2 [10,17], suggesting that the activation
of BH3-only proteins may also be required to relieve a Bcl-
2 inhibition of AIF release.

Previous studies have indicated an involvement of the
BH3-only protein Bad in glutamate- and Ca2+-induced
neuronal apoptosis [18]. Interestingly, neurons from mice
deficient in the BH3-only protein Bid have also been
shown to be resistant to ischemic injury in vivo, as well as
hypoxic and excitotoxic injury in vitro [19]. Bid is an essen-
tial component of most forms of death receptor-mediated
apoptosis, and is activated post-translationally via cas-
pase-8-mediated cleavage into a truncated form (tBid)
[20,21]. tBid is subsequently myristoylated [22], triggers
the activation of Bak or Bax [23,24], and induces cyt-C
release from mitochondria. However, there is a growing
body of evidence suggesting that caspase activation during
excitotoxic neuron death may be marginal or even absent
[6,8,25-27]. Conversely, this suggests that Bid may trigger
excitotoxic cell death through more than one pathway.
Using a fluorescence resonance energy transfer single-cell
imaging approach of Bid cleavage and translocation dur-
ing apoptosis, we have recently demonstrated that cas-
pase-independent excitotoxic apoptosis induces a
translocation of full length Bid (FL-Bid) from the cytosol
to mitochondria [28]. In the present study, we demon-
strate FL-Bid is sufficient to induce apoptosis of cultured
rat hippocampal neurons.

Results
FL-Bid is not a significant protease substrate during 
excitotoxic neuron death
To investigate the involvement of apoptotic proteins in
excitotoxic neuron death, we recently established a model
in which a transient, 5-min exposure to the glutamate
receptor agonist NMDA (300 μM) induced a delayed cell
death in primary cultures of rat hippocampal neurons
[7,8]. This excitotoxic cell death is characterized by mito-
chondrial cyt-C release and ΔΨm depolarization setting in
4 to 8 h after the NMDA exposure, followed by nuclear
condensation and cell shrinkage [7,8]. We determined if
FL-Bid is able to translocate to mitochondria in this model
of excitotoxic apoptosis. To this end, immunoblotting
experiments were performed using a rabbit polyclonal
antibody (AR-53) that detects p21 FL-Bid, as well as its
caspase-8-/caspase-3-generated NH2-terminal cleavage
product [29,30]. Control experiments demonstrated that
the antibody was able to detect FL-Bid and its caspase-gen-
erated NH2-terminal p7 fragment in HeLa D98 cells after
an activation of death receptors with TNF-α/Cyclohex-
imide(CHX) (Fig. 1A, see also Additional File 1A). The
antibody was also able to detect the p7 fragment in cul-
tured rat hippocampal neurons (Fig. 1B) exposed to the
apoptosis-inducing kinase inhibitor staurosporine (STS)
or TNF-α/CHX (Fig. 1B see also Additional File 1B). How-
ever, neither a decrease in the content of FL-Bid, nor an
accumulation of caspase-generated cleavage products
could be detected in whole cell lysates of cultured rat hip-
pocampal neurons exposed to NMDA (Fig. 1C, see also
Additional File 1C). Activation of proteases after the
NMDA exposure was however clearly detectable in the
same whole cell lysates. This was evident from the
decrease in the calpain I substrate full-length α-spectrin
and the accumulation of calpain-specific 150 and 145
kDa α-spectrin cleavage products 4 and 8 h after the
NMDA exposure (Fig. 1D).

Translocation of FL-Bid to mitochondria during 
excitotoxic neuron death
Next, we performed selective plasma membrane permea-
bilization and subsequent immunoblotting of the
cytosolic fraction and the mitochondria-containing pellet
fraction in cultured rat hippocampal neurons exposed to
NMDA for 5 min. Immunoblotting with a voltage
dependent anion carrier (VDAC) antibody demonstrated
that the cytosolic fraction was not contaminated with
mitochondria. Immunoblotting with the Bid antibody
revealed that p21 FL-Bid translocated from the cytosol to
the mitochondria-containing pellet fraction 4 h and more
pronounced 8 h after termination of the NMDA exposure
(Fig. 2A). This process was paralleled by the translocation
of cyt-C from the mitochondria-containing pellet fraction
to the cytosol (Fig. 2A) 4 h and 8 h after the NMDA expo-
sure. Interestingly, despite a significant cyt-C decrease in
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the mitochondrial fraction by 8 h, the cyt-C content in the
cytosolic fraction did not increase correspondingly, sug-
gesting that cyt-C may be degraded upon release into the
cytosol (see also [31]). Indeed, treatment with the mem-
brane permeable cathepsin inhibitor CA-074 methyl ester
recovered the cyt-C content in the cytosolic fraction 8 h
after the NMDA exposure (Fig. 2A).

These results were confirmed by immunofluorescence
analysis of Bid redistribution during excitotoxic neuron
death using the above described Bid antibody. Neurons of
sham-exposed control cultures exhibited a diffuse Bid
immunofluorescence signal (Fig. 2B). Cyt-C co-staining
revealed a filamentous, punctate staining pattern in sham-
exposed controls characteristic of mitochondria. In con-
trast, cells that had released cyt-C in response to NMDA
exhibited a clustered Bid immunofluorescence around the
nucleus. Cells with released cyt C and clustered Bid
immunofluorescence also exhibited nuclear chromatin

condensation as evidenced by staining with the chroma-
tin dye Hoechst 33258 (Fig. 2B).

Mild overexpression of FL-Bid or a Bid mutant that can not 
be cleaved by caspase-8 potently induces cell death in 
cultured rat hippocampal neurons
We subsequently addressed the question, whether FL-Bid
was sufficient to induce cell death in the hippocampal
neuron cultures, and whether this cell death can occur in
the absence of caspase-8-mediated Bid cleavage. Cultured
rat hippocampal neurons were infected with adenoviral
vectors expressing either FL-Bid or a Bid mutant that can
not be cleaved by caspase-8 (D59A) under the control of
a tetracycline responsive promoter [32]. Western blot
analysis of cultures infected with the adenoviral vectors
(50 MOI) and induced for 24 h with 1 μg/ml doxycycline
demonstrated a mild overexpression of FL-Bid in the hip-
pocampal neuron cultures (Fig. 3A). This overexpression
was however sufficient to induce a massive cell death in

Death receptor mediated cleavage of Bid in HeLa cells and cultured rat hippocampal neuronsFigure 1
Death receptor mediated cleavage of Bid in HeLa cells and cultured rat hippocampal neurons. Cleavage of FL-Bid 
in HeLa D98 cells (A)and cultured rat hippocampal neurons (B)exposed to TNF-α plus CHX (100 ng/ml plus 1 μg/ml) or stau-
rosporine (STS, 3 μM and 300 nM, respectively) for the indicated time periods. Bid cleavage was detected by Western blot 
analysis. Duplicate experiments yielded similar results. (C)No detectable cleavage of FL-Bid during NMDA-induced neuronal 
death. Cultured rat hippocampal neurons were exposed to 300 μM NMDA in Mg2+-free HBS for 5 min, washed, returned to 
the original culture medium, and analyzed by Western blotting after 4 and 8 h. Sham-washed cultures were exposed to Mg2+-
free HBS devoid of NMDA. Lack of Bid cleavage during excitotoxic neuron death was observed in four separate experiments. 
(D)Immunoblot analysis demonstrates significant cleavage of α-spectrin into its calpain-generated 150 and 145 kDa breakdown 
products. Duplicate experiments yielded similar results.
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the hippocampal neuron cultures that was characterized
by cell shrinkage and nuclear condensation. Hoechst
staining of nuclear chromatin revealed significant neuro-
nal damage 24 h after induction with doxycycline, reach-
ing a level of 80.1 ± 2.7% (Fig. 3B). FL-Bid-induced cell
death was associated with the mitochondrial release of the
pro-apoptotic factors cyt-C and AIF (Fig. 3C and data not
shown). In contrast, hippocampal neurons that were
infected with the adenoviral vectors but were not induced
with doxycycline remained viable for up to 24 h, as were
cells that were treated with doxycycline but not infected
with the adenoviral vectors (Fig. 3B). Interestingly, over-
expression of Bid(D59A) also potently induced cell death
in the hippocampal neuron cultures, reaching a level of
73.5 ± 3.1% after 24 h (p > 0.1, no significant difference
compared to FL-Bid induced cultures).

Discussion
Ischemic and hypoxic injuries to the nervous system have
been shown to involve the release of cell death-inducing
cytokines and the activation of death receptors [19]. It is
likely that these events involve the caspase-8-mediated
cleavage of the BH3-only protein Bid. In support of this
hypothesis, Bid-deficient animals exhibited reduced neu-
ronal injury after cerebral ischaemia [19]. Our data pro-
vide evidence that Bid may be involved in an additional,
intrinsic cell death pathway triggered by the overactiva-
tion of glutamate receptors. This pathway did not require
the generation of the caspase-8-generated cleavage prod-
uct tBid. Instead, we observed an efficient translocation of
FL-Bid to mitochondria during excitotoxic neuron death.
This translocation was associated with the mitochondrial

release of pro-apoptotic factors, a process that commits
cells to both caspase-dependent and caspase-independent
cell death [33,34]. Although our data does not rule out the
possibility that other BH3 only proteins are involved in
excitotoxic apoptosis, it demonstrates that FL-Bid is suffi-
cient to induce an apoptotic cell death in cultured rat hip-
pocampal neurons.

There is growing evidence that the caspase cascade may
not be potently activated during excitotoxic neuron death,
despite the release of cyt-C from mitochondria [6-
10,27,28]. We and others have previously demonstrated
that calpains activated during excitotoxicity degrade and
inactivate essential components of the caspase activating
pathway including APAF-1, procaspase-9, -8, and -3
[8,35,36]. There is also evidence that levels of Apaf-1
decrease during neuronal maturation, inhibiting apopto-
some formation after mitochondrial outer membrane per-
meabilization (MOMP) [37]. In the absence of caspase
activation MOMP may activate alternative cell death path-
ways that include ATP depletion and increased ROS pro-
duction subsequent to cyt-C release, as well as the release
of AIF [7,9,38-40].

In contrast to death receptor-induced apoptosis we could
not detect significant amounts of cleaved Bid accumulat-
ing in the cultured rat hippocampal neurons in response
to NMDA. However, we cannot exclude the possibility
that Bid may be cleaved during the later stages of apopto-
sis, downstream of MOMP or an intracellular ion home-
ostasis breakdown [28,41,42]. These cells will
subsequently undergo plasma membrane leakage, a proc-

Translocation of FL-Bid to the mitochondria coincides with a loss of cyt-CFigure 2
Translocation of FL-Bid to the mitochondria coincides with a loss of cyt-C. (A)Immunoblot analysis of cytosolic and 
mitochondria-containing pellet fractions after selective plasma membrane permeabilization in cells exposed to Mg2+-free HBS 
(controls) or NMDA with or without CA-074-Me. The experiment was performed in duplicate with similar results. (B)Immun-
ofluorescence analysis of cyt-C and Bid distribution in sham- and NMDA-exposed rat hippocampal neurons. Cells were fixed 8 
h after termination of the exposure. Nuclei were counterstained with Hoechst 33258. Scale bar = 5 μm.
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FL-Bid or a Bid mutant that can not be cleaved by caspase-8 potently induces cell death in cultured rat hippocampal neuronsFigure 3
FL-Bid or a Bid mutant that can not be cleaved by caspase-8 potently induces cell death in cultured rat hippoc-
ampal neurons. (A)Western blot analysis of Bid overexpression in cultured rat hippocampal neurons. Cells were co-infected 
with the wild-type (wt) FL-Bid adenovirus and the rtTA containing virus. Expression of Bid was induced by 1 μg/ml doxycycline 
treatment for 12 or 24 h. Control cells were infected but not induced. (B)Quantification of cells showing nuclear condensation 
in response to an overexpression of wt FL-Bid or the Bid(D59A) mutant (mt). Cells were co-infected with the wt or mt FL-Bid 
adenovirus and the rtTA containing virus. After 48 h, expression of Bid was induced by the addition of 1 μM doxycycline for 12 
or 24 h. Cells exhibiting nuclear condensation or nuclear fragmentation were counted in 4 – 5 randomly chosen subfields after 
staining with the chromatin-specific dye Hoechst 33528. Data are means ± SEM from n = 3 experiments. (C)AIF immunofluo-
rescence analysis in non-induced and induced hippocampal neurons. Cells were co-infected with the wt FL-Bid adenovirus and 
the rtTA containing virus and induced for 12 h. Note the mitochondrial AIF immunofluorescence in non-induced cells sparing 
the nuclear region, and AIF translocation to the nucleus in the induced neuron cultures. Bar = 10 μm.
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ess that may limit the ability to detect Bid cleavage during
the late stages of apoptosis. A previous report has demon-
strated that translocation of FL-Bid to mitochondria may
also occur in response to an activation of death receptors
when caspase-8 activation is blocked by the addition of a
caspase-8 inhibitor [43]. In Bid- and caspase-8-deficient
mouse embryonic fibroblasts, FL-Bid or the non-cleavable
mutant FL-Bid(D59A) are also sufficient to activate apop-
tosis [32]. In line with this finding we found no significant
difference in the ability of FL-Bid and Bid(D59A) to
induce cell death in cultured rat hippocampal neurons.

How may NMDA receptor overactivation stimulate FL-Bid
translocation? Previous studies have demonstrated that
excitotoxic neuron death is associated with a selective
inhibition of phosphatidylcholine synthesis [44]. It has
also been shown that physiological concentrations of
phosphatidic acid and phosphatidylgycerol are able to
induce an accumulation of FL-Bid in mitochondria [45].
FL-Bid has been shown to be sufficient to induce the oli-
gomerization of Bax/Bak, resulting in its integration into
the outer mitochondrial membrane triggering cyt-C
release [24]. Finally, recombinant FL-Bid displayed lipid
transfer activity under the same conditions and at the
same nanomolar concentrations that lead to mitochon-
drial translocation and Cyt-C release [45]. Changes in the
intracellular phospholipid environment during excito-
toxic cell death signals may hence induce the transloca-
tion of FL-Bid to mitochondria and may initiate the
release of pro-apoptotic factors from mitochondria.

Conclusion
Bid is highly expressed in the nervous system during
embryonic and postnatal development. Interestingly and
in contrast to most BH3 only proteins, Bid expression
remains high in the adult nervous system [29]. The ability
of both tBid and FL-Bid to translocate to mitochondria
and to induce cell death suggest that this BH3-only pro-
tein is a central mediator of pathophysiological neuron
death.

Methods
Materials
N-Methyl-D-aspartate (NMDA), recombinant tumor
necrosis factor-α (TNF-α), glycin and cycloheximide
(CHX) came from Sigma (Poole, Dorset, U.K.). Tetrodo-
toxin was purchased from Biotrend (Cologne, Germany),
CA-074 methyl ester (CA-074-ME) from Calbiochem
(Bad Soden, Germany), and staurosporine (STS) from
Alexis (Grünberg, Germany).

Cell Culture
Cultured hippocampal neurons were prepared from neo-
natal (P1) Fischer 344 rats (Luetjens et al., 2000). Dissoci-
ated hippocampal neurons were plated at a density of 2 ×

105 cells/cm2 into poly-L-lysine-coated 6- or 24-well plates
or glass chamber slides (Nunc). Cells were maintained in
MEM medium supplemented with 10% NU-serum, 2% B-
27 supplement (50 × concentrate), 2 mM L-glutamine, 20
mM D-glucose, 26.2 mM sodium bicarbonate, 100 U/ml
penicillin and 100 μg/ml streptomycin (Life Technolo-
gies, Karlsruhe, Germany). Experiments were performed
on 14 – 16 day-old cultures. Animal care followed official
governmental guide lines. HeLa D98 cells were cultured in
RPMI 1640 medium (Life Technologies, Germany) sup-
plemented with 10% fetal calf serum (PAA, Cölbe, Ger-
many).

Excitotoxic neuronal injury
Cultures were exposed for 5 min to Mg2+-free Hepes-buff-
ered saline (HBS) supplemented with 300 μM NMDA, 0.5
μM tetrodotoxin and 1 μM glycine [7,8]. Control cultures
were exposed to Mg2+-free HBS devoid of NMDA (sham
exposure). Cell death was determined after 24 h by
trypan-blue uptake [7]. Experiments were performed on
14 or 15 day-old cultures.

Generation of adenoviral vectors expressing FL-Bid or FL-
Bid(D59A) in an inducible system and infection protocol
Tetracycline (tet)-on inducible adenovirus vectors
expressing wild-type FL-Bid or the D59A mutant of FL-Bid
that can not be cleaved by caspase-8 were generated as
described previously [32]. Hippocampal neurons were
infected at a MOI (multiplicity of infection) of 50 with
both the FL-Bid or Bid(D59A) containing viruses and the
reverse tet transactivator rtTA containing virus. One μg/ml
doxycycline (Sigma) was added to the medium 24 h post
infection to activate gene expression from the tet-induci-
ble promoter [32].

Immunofluorescence microscopy
Hippocampal neurons were washed, fixed with formalde-
hyde, and permeabilized with Tween-20 (0.3%). The fol-
lowing primary antibodies were used: mouse monoclonal
anti-cyt-C (6H2.B4, San Diego, CA; 10 μg/ml), rabbit pol-
yclonal anti-Bid raised against amino acids 1–58 of
mouse Bid (AR-53; 1:1,000), and rabbit polyclonal anti-
Apoptosis-Inducing-Factor (AIF) (1:500; [46]). Nuclei
were counterstained with Hoechst33258. Primary anti-
bodies were detected and fluorescent images acquired as
described previously [7].

Digitonization, SDS-PAGE, and Western blotting
The release of cyt-C from mitochondria was analyzed by
selective permeabilization of the plasma membrane [47].
Briefly, cells were permeabilized with 100 μg/ml digitonin
at 4°C for 10 min. The supernatant representing the
cytosol and the mitochondria-containing pellet fraction
were separated by centrifugation and denatured. SDS-
PAGE and Western blot analysis was performed as
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described previously [8]. Cyt-C was detected with a mon-
oclonal Cyt-C antibody (7H8.2C12; Pharmingen), Bid
with the rabbit polyclonal antibody diluted 1:2,000,
VDAC (Porin) and HSP-90 with mouse monoclonal anti-
Porin (31HL, Calbiochem) and anti-HSP90α/β (Santa
Cruz, Heidelberg, Germany) antibodies, respectively, at a
dilution of 1:5,000. α-spectrin and its calpain-generated
cleavage products were detected with a mouse mono-
clonal antibody (1622; Chemicon) diluted 1:5,000, and
α-tubulin with a mouse monoclonal antibody (DM-1A;
Sigma) diluted 1:1,000.

Statistics
Data are given as means ± S.E.M. For statistical compari-
son, one-way analysis of variance followed by Tukey's test
were employed. P values smaller than 0.05 were consid-
ered to be statistically significant.
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Long exposures for Figure 1A, B and 1C. The abundance of the FL-Bid 
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to STS and TNF-α treated HeLa cells no such band is visible after treat-
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