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Abstract
Background: HC11 mouse mammary epithelial cells differentiate in response to lactogenic hormone
resulting in expression of milk proteins including β-casein. Previous studies have shown that epidermal
growth factor (EGF) blocks differentiation not only through activation of the Ras/Mek/Erk pathway but also
implicated phosphatidylinositol-3-kinase (PI-3-kinase) signaling. The current study analyzes the mechanism
of the PI-3-kinase pathway in an EGF-induced block of HC11 lactogenic differentiation.

Results: HC11 and HC11-luci cells, which contain luciferase gene under the control of a β-casein
promotor, were treated with specific chemical inhibitors of signal transduction pathways or transiently
infected/transfected with vectors encoding dominant negative-Akt (DN-Akt) or conditionally active-Akt
(CA-Akt). The expression of CA-Akt inhibited lactogenic differentiation of HC11 cells, and the infection
with DN-Akt adenovirus enhanced β-casein transcription and rescued β-casein promotor-regulated
luciferase activity in the presence of EGF. Treatment of cells with Rapamycin, an inhibitor of mTOR,
blocked the effects of EGF on β-casein promotor driven luciferase activity as effectively as PI-3-kinase
inhibitors. While expression of CA-Akt caused a constitutive activation of p70S6 kinase (p70S6K) in HC11
cells, the inhibition of either PI-3-kinase or mTOR abolished the activation of p70S6K by EGF. The
activation of p70S6K by insulin or EGF resulted in the phosphorylation of ribosomal protein S6 (RPS6),
elongation initiation factor 4E (elF4E) and 4E binding protein1 (4E-BP1). But lower levels of PI-3-K and
mTOR inhibitors were required to block insulin-induced phosphorylation of RPS6 than EGF-induced
phosphorylation, and insulin-induced phosphorylation of elF4E and 4E-BP1 was not completely mTOR
dependent suggesting some diversity of signaling for EGF and insulin. In HC11 cells undergoing lactogenic
differentiation the phosphorylation of p70S6K completely diminished by 12 hours, and this was partly
attributable to dexamethasone, a component of lactogenic hormone mix. However, p70S6K
phosphorylation persisted in the presence of lactogenic hormone and EGF, but the activation could be
blocked by a PI-3-kinase inhibitor.

Conclusion: PI-3-kinase signaling contributes to the EGF block of lactogenic differentiation via Akt and
p70S6K. The EGF-induced activation of PI-3-kinase-Akt-mTOR regulates phosphorylation of molecules
including ribosomal protein S6, eIF4E and 4E-BP1 that influence translational control in HC11 cells
undergoing lactogenic differentiation.
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Background
HC11 mouse mammary epithelial cells have been widely
used as an in vitro model of mammary gland epithelial cell
differentiation. The HC11 cell line preserves important
features of mammary epithelial cell lactogenic differentia-
tion; it was clonally derived from the COMMA-1D cells, a
line immortalized from mammary tissue of a pregnant
BALB/c mouse [1,2]. The HC11 cells are non-tumorigenic,
display a normal epithelial phenotype, and the injection
of HC11 cells into the cleared fat pad of BALB/c mice
exhibited normal ductal and alveolar-like structures [1,3].
HC11 mammary epithelial cell lactogenic differentiation
can be initiated in culture following the growth to conflu-
ence and deposition of extracellular matrix in the presence
of epidermal growth factor (EGF), subsequent removal of
EGF from the culture and the addition of lactogenic hor-
mone mix, DIP (dexamethasone, insulin, and prolactin);
upon differentiation HC11 cells express specific milk pro-
teins including β-casein [1]. Moreover, during lactogenic
differentiation in culture the HC11 cells undergo pheno-
typic transformation to "mammospheres", enlarged
domed structures with a lumen [4-6].

HC11 cells express receptor tyrosine kinases of various
subclasses [7,8], and the addition of specific mitogens e.g.
EGF or the presence of oncogenes, including activated
Ras, inhibit lactogenic differentiation [6,8-11]. Several sig-
naling mechanisms have been shown to facilitate the
EGF-induced block of lactogenic differentiation. The two
key pathways implicated in HC11 cells are Ras/Raf/Mek/
Erk and phosphatidylinositol-3-kinase (PI-3-kinase)
pathways [6,8,10,12]. Our previous study demonstrated
that DN-Ras expression blocked EGF-induced inhibition
of HC11 cell lactogenic differentiation via inhibition of
Raf/Mek/Erk signaling and enhanced Stat5 phosphoryla-
tion [6]. However, the activation of PI-3-kinase by EGF
was largely independent of Ras in these cells, but it did
contribute to inhibition of lactogenesis.

The PI-3-kinases are a ubiquitously expressed lipid kinase
family that plays a key role in cellular proliferation,
growth and survival. PI-3-kinase was initially purified and
cloned as a heterodimeric complex consisting of an 110
kDa catalytic subunit and an 85 kDa regulatory/adaptor
subunit [13]. Recent reviews of the PI-3-kinase pathway
describe its activation and activity [14,15]. The Class I PI-
3-kinases [16] are activated following either binding of
the p110 subunit to activated Ras [17,18] or binding of
the SH2 domains of the p85 adaptor protein to phospho-
tyrosine residues of the EGF receptor [14]. PI-3-kinase
translocates from the cytosol to the membrane where it
phosphorylates the 3'-OH position of the inositol ring of
substrates including phosphatidylinositol-4, 5-bisphos-
phate. This phosphorylation directs the membrane locali-
zation of 3-phosphoinositide-dependent kinase 1 (PDK1)

through its pleckstrin homology (PH) domain resulting
in the autophosphorylation of PDK1 and phosphoryla-
tion of Akt at Thr 308. Maximal activation of Akt kinase
activity requires Ser 473 phosphorylation by a kinase that
has yet to be completely characterized and is referred to as
PDK2 [19]. There are numerous known Akt substrates
including GSK3β, FKHR1 and IKK, and Akt controls
aspects of cell survival as well as cell growth and division
by phosphorylating these key regulators [20-27].

The activation of Akt can link mitogenic signaling with
nutrient sensing pathways that regulate protein synthesis
and cell size via a pathway that includes TSC2/tuberin, the
GTPase RHEB and the serine-threonine kinase mamma-
lian target of rapamycin, mTOR [28-31]. The activation of
mTOR leads to mTOR-initiated phosphorylation of the
translation regulators p70S6 kinase and eukaryotic trans-
lation initiation factor 4E binding protein 1 (4E-BP1)
[32].

The PI-3-kinase and Akt signal transduction pathway con-
tributes to mammary carcinogenesis and resistance of
tumors to chemotherapy as a result of mutation and
amplification of component members [33-38]. In addi-
tion, the control of Akt activity is important in maintain-
ing normal polarized mammary architecture [39-41].
Hence, we examined the importance of the PI-3-kinase
pathway in HC11 undergoing lactogenic differentiation.
We determined that ectopic expression of conditionally
active-Akt blocks lactogenic differentiation and that
inhibiting PI-3-kinase, Akt, or mTOR rescues the EGF-
induced block of lactogenic differentiation in HC11
mammary epithelial cells. Our data indicate that EGF
stimulation activates Akt and subsequently p70S6 kinase,
RPS6, eIF4E and 4E-BP1 via PI-3-kinase/Akt dependent
mechanisms in HC11 cells. Therefore, activation of PI-3-
kinase in HC11 mammary epithelial cells may regulate
changes in translational control of proteins that influence
the ability of lactogenic hormone to induce differentia-
tion.

Results
EGF blocks HC11 lactogenic differentiation via Mek/Erk 
and PI-3-K dependent pathways
Recent publications from our lab and others [6,12,42]
suggest that PI-3-kinase plays a key role in mammary epi-
thelial cell lactogenic differentiation. The present study
addresses the mechanism by which PI-3-kinase blocks
HC11 mammary epithelial cell lactogenic differentiation.
Several parameters defining HC11 mammary epithelial
cell differentiation were examined to follow the effects of
signal transduction pathways on the differentiation proc-
ess. The markers include β-casein synthesis and mammos-
phere formation [1,4,43-45]. Two related cell lines were
employed in the study: HC11 mammary epithelial cells
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and HC11-luci cells which contain a luciferase gene under
the control of a β-casein promotor.

EGF stimulation of HC11 cells activates PI-3-kinase sign-
aling as well as other pathways, and the results from our
previous study determined that EGF blocked activation of
a β-casein promotor-luciferase activity following induc-
tion of lactogenic differentiation via both Mek/Erk and PI-
3-kinase dependent mechanisms [6]. The results in figure
1 confirm and expand those findings using an inhibitor of
PI-3-kinase activity. β-casein RNA transcription was exam-
ined by northern blotting following stimulation of HC11
cells with the lactogenic hormone mix, DIP, in the pres-
ence and absence of EGF and LY294002. EGF blocked lac-
togenic hormone induced β-casein transcription and the
addition of the PI-3-kinase inhibitor, LY294002, partially
rescued β-casein transcription (figure 1A). However, the
addition of PI-3-kinase inhibitors LY294002 or wortman-
nin in the absence of EGF reduced all markers of lac-
togenic differentiation (data not shown), indicating that
survival signaling from this pathway was essential for
HC11 differentiation to proceed.

Mammosphere formation is another important marker of
HC11 lactogenic differentiation. HC11 cells were induced
to differentiate in DIP-induction media with or without
EGF and LY294002. The cells were observed and photo-
graphed at 96 hours post-induction. EGF blocked the for-
mation of mammospheres and LY294002 rescued the
EGF block of mammosphere formation (figure 1B). This
suggested that PI-3-kinase activation was an important
component in the EGF-induced block of phenotypic lac-
togenic differentiation.

Constitutive activation of Akt-1 blocks lactogenic 
differentiation and the expression of dominant negative-
Akt enhances differentiation in HC11 cells
The activation of Akt is a major outcome of PI-3-kinase
stimulation. Hence, the role of Akt in regulating HC11
lactogenic differentiation was examined. Transient trans-
fection of a plasmid encoding a HA-tagged conditionally
active-Akt-1 (CA-Akt1) gene was used to assess the ability
of the activated Akt pathway to block lactogenic differen-
tiation via inhibition of β-casein promotor luciferase
activity [46]. HC11-luci cells were transiently transfected
with either a plasmid encoding a HA-tagged conditionally
active-Akt1 or a control vector. Western blotting of trans-
fected cell lysates revealed that the HA-tagged condition-
ally active-Akt1 was expressed at levels equal to the
endogenous Akt protein (figure 2A). The cells were
induced to differentiate with DIP in the presence of 4-
hydroxy-tamoxifen to activate the HA-tagged condition-
ally active-Akt1, and luciferase activity was determined 48
hours after induction. Expression of the conditionally
active-Akt1 significantly decreased luciferase activity com-

pared to the control vector and the addition of tamoxifen
slightly reduced the luciferase activity in CA-Akt1 trans-
fected cells (figure 2A). This indicated that the CA-Akt1
was not completely responsive to 4-hydroxy-tamoxifen
under these conditions but that there was sufficient activ-
ity from the protein to activate PI-3-kinase signaling
above that in control cells. The results in figure 4D con-
firm elevated activation of the pathway.

Infection with a replication defective adenovirus encoding
a dominant negative-Akt1 (DN-Akt) containing muta-
tions at both the active site and regulatory serine phos-
phorylation sites [47] was used to further assess the role of
the Akt pathway in blocking lactogenic differentiation.
HC11 and HC11-luci cells were grown to 90% confluence
and infected with a dominant negative-Akt1 or a control
adenovirus. At 24 hours post infection the cells were
induced to differentiate in the presence or absence of EGF
and then harvested 48 hours later. The amount of DN-Akt
was assayed by western blotting and the influence of DN-
Akt on the β-casein promotor luciferase activity was deter-
mined (figure 2B). In the absence of EGF, infection with
the DN-Akt adenovirus did not affect the DIP-induced
promotor activity, but DN-Akt partially rescued the EGF-
induced inhibition of β-casein promotor luciferase activ-
ity compared to LacZ vector control. In addition, the res-
cue of luciferase activity was greater in the DN-Akt
infected cells than in LY294002 treated cells when cells
were stimulated with DIP in the presence of EGF.

The effect of DN-Akt on β-casein RNA expression in HC11
cells treated with lactogenic hormone was assessed (figure
2C). Infection with the DN-Akt adenovirus doubled β-
casein RNA expression in the HC11 cell line compared to
vector control infected cells. Because the expression of
conditionally active-Akt1 blocked lactogenic differentia-
tion and dominant negative-Akt1 enhanced lactogenic
differentiation, we conclude that Akt activity can contrib-
ute to the regulation of lactogenic differentiation in HC11
cells.

EGF activates p38 Kinase, Jnk and p70S6 Kinase via PI-3-K 
and mTOR dependent mechanisms in HC11 mammary 
epithelial cells
Both Akt1 and p38MapK have been identified as a poten-
tial downstream targets of EGF signaling in mammary epi-
thelial cells. In addition, Akt stimulates activation of
mTOR. The effect of blocking PI-3-kinase pathway,
including mTOR and the stress kinase pathways, on EGF-
induced inhibition of lactogenic differentiation was deter-
mined in HC11-luci cells. Inhibitors of Mek, PI-3-kinase
and p38 kinase as well as Rapamycin, an mTOR inhibitor,
were added to HC11-luci cells in DIP-induction media in
the presence of EGF. Luciferase activity was measured 48
hours post-induction and normalized to protein concen-
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The effect of the PI-3-kinase inhibitor, LY294002 on epidermal growth factor (EGF) disruption of differentiationFigure 1
The effect of the PI-3-kinase inhibitor, LY294002 on epidermal growth factor (EGF) disruption of differentiation. A. HC11 cells 
were induced to differentiate in DIP-induction media with and without EGF (10 ng/ml) and LY294002 (5 μM) for 48 hours. β-
casein induction was determined via northern blot and was normalized to β-actin. B. HC11 cells were grown to confluence as 
stated above and induced to differentiate in DIP-induction media with and without EGF (10 ng/ml) and LY294002 (10 μM). 
Cells were photographed at 96 hours post-induction. The number of mammospheres per field is reported: this was deter-
mined by counting the number of mammospheres per low power field and determining the mean of five fields.
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The effect of conditionally active-Akt1 and dominant negative-Akt1 on HC11 differentiationFigure 2
The effect of conditionally active-Akt1 and dominant negative-Akt1 on HC11 differentiation. A. The HC11-luci cells transiently 
transfected with either a conditionally active-Akt-1 (CA-Akt) or a control vector (pCDNA3.1). At 24 hours the cells were 
incubated in DIP-induction media with or without tamoxifen (1 μM). Luciferase activity was determined 48 hours post-induc-
tion and was normalized to protein concentration. Expression of Akt and HA-CA-Akt was determined via western blot. Lanes 
were loaded with equal amounts of protein (117.5 μg). B. The effect of dominant negative-Akt1 (DN-Akt) adenoviral infection 
on EGF disruption of differentiation. HC11-luci cells were infected with either a DN-Akt1 or control (LacZ) adenovirus. Cells 
were changed to DIP-induction media the next day and lysates were harvested 48 hours post-induction for β-casein promotor 
luciferase activity. The results were compared to cultures exposed to DIP plus LY294002 (5 μM). Expression of Akt was deter-
mined via western blot analysis and gels were loaded with equal amount of protein (120 μg). C: HC11 cells were infected with 
either a DN-Akt1 or control (LacZ) adenovirus. RNA was harvested 48 hours post-induction for analysis of β-casein RNA 
expression by northern blot. Expression of Akt was determined via western blot analysis and gels were loaded with equal 
amount of protein (120 μg).
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tration (figure 3). As expected the addition of EGF to the
DIP induction media resulted in inhibition of luciferase
activity, and each inhibitor alone significantly restored the
β-casein promotor activity compared to DIP plus EGF. In
combination analyses it appeared that PD98059, the
Mek-Erk inhibitor, produced synergistic effects with
LY294002 and Rapamycin. However, combinations of
LY294002 with Rapamycin and SB203580 produced
additive or less than additive responses. This was also the
case for a combination of Rapamycin with SB203580.
These results demonstrate that the EGF-induced disrup-
tion of lactogenic differentiation proceeds by blocking
both the Ras-Raf-Mek-Erk pathway and the PI-3-kinase
pathway. In addition, the results suggest that EGF-induced
activation of mTOR and p38 are both dependent on PI-3-
kinase signaling in HC11 cells (figure 3). It should be
noted that the increase in luciferase activity detected in
inhibitor-treated cells is specific to recovery of activity
blocked by EGF. The treatment of HC11-luci cells with
high levels of PI-3-kinase or mTOR inhibitors in the

absence of EGF reduced cell viability and thereby
decreased lactogenic differentiation (data not shown).

HC11 cells were examined to more fully characterize the
effect of PI-3-kinase and mTOR inhibitors on several sig-
nal transduction pathways induced by EGF. HC11 cells
were serum starved in the absence of EGF and incubated
for 4 hours with LY294002 or Rapamycin prior to stimu-
lation with EGF. The cell lysates were harvested following
EGF stimulation and analyzed by western blotting for
expression and phosphorylation of Akt, Gsk3β, p70S6
kinase and the Map kinases Erk, Jnk and p38. The PI-3-
kinase inhibitor completely blocked the phosphorylation
and subsequent activation of Akt on serine 473 and p70S6
kinase on threonine 389 and partially blocked the phos-
phorylation and activation of p38 and Jnk (figure 4A).
The mTOR inhibitor Rapapmycin completely blocked the
activation of p38, Jnk and p70S6 kinase (figure 4A). How-
ever, neither inhibitor blocked the activation of Erk1. The
data demonstrate that EGF-induced activation of p38, Jnk
and p70S6 kinase in HC11 cells is both PI-3-kinase and

The effect of signal transduction inhibitors on EGF-induced inhibition of lactogenic differentiationFigure 3
The effect of signal transduction inhibitors on EGF-induced inhibition of lactogenic differentiation. HC11-luci cells were 
induced to differentiate in DIP-induction media in the presence or absence of EGF (10 ng/ml). Inhibitors were added alone or 
in combination at the time of induction (LY294002 10 μM, SB203580 10 μM, Rapamycin 100 nM, PD98059 20 μM). Luciferase 
activity was determined 48 hours post-induction and normalized to protein concentration. *These values represent statistically 
significant difference (P value .0001) from the DIP+EGF.
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mTOR dependent. Because the addition of LY294002 to
either Rapamycin or SB203580 did not increase their abil-
ity to block effects of EGF, it suggests that blocking PI-3-
kinase inhibits p38 and mTOR in HC11 cells. Because the
combination of the PI-3-kinase and Mek/Erk inhibitors
synergistically increased β-casein promotor luciferase
activity (figure 3) and because neither LY294002 nor
Rapamycin affects EGF-induced Erk activation (figure 4A),
we conclude that the PI-3-kinase and Mek/Erk signaling
pathways are independent and synergistic in their ability
to block lactogenic differentiation in HC11 cells.

EGF stimulation results in phosphorylation of ribosomal 
protein S6, elongation initiation factor 4E, eIF4E-binding 
protein 1 via PI-3-kinase/mTOR dependent mechanisms
The Akt/mTOR/p70S6 kinase pathway regulates cell
growth and proliferation via the regulation of protein syn-
thesis [32]. To elucidate the potential role of PI-3-kinase
in HC11 cell protein synthesis we investigated the activa-
tion state of potential substrates of p70S6 kinase follow-
ing EGF stimulation. HC11 cells were serum starved in the
absence of EGF and incubated with LY294002, Rapamy-
cin or PD98059 prior to stimulation with EGF. The cell

The effect of PI-3-kinase and mTOR inhibitors on signal transduction pathways in HC11 cellsFigure 4
The effect of PI-3-kinase and mTOR inhibitors on signal transduction pathways in HC11 cells. HC11 cells were serum starved 
overnight and incubated four hours with indicated inhibitors prior to re-stimulation with EGF (100 ng/ml) for times indicated. 
Lysates were harvested and analyzed by western blotting using antibodies specific for phosphorylated and non-phosphorylated 
forms of the indicated proteins. A. Cells treated with LY294002 (10 μM) and Rapamycin (50 nM) B. Cells treated with 
LY294002 (10 μM) and Rapamycin (50 nM) C. Cells treated with LY294002 (10 μM) and PD98059 (20 μM). D. The effect of 
conditionally activated-Akt1 on the Akt and p70S6K signal transduction pathway in HC11 cells. The HC11 cells were tran-
siently transfected with either a conditionally active-Akt1 (CA-Akt) or a control vector. At 24 hours the cells were serum 
starved overnight in 4-hydroxy tamoxifen (1 μM). The next day the cells were re-stimulation with EGF (100 ng/ml) for times 
indicated. Lysates were harvested and analyzed by western blotting using antibodies specific for phosphorylated and non-phos-
phorylated forms of the indicated proteins.
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lysates were harvested and analyzed by western blotting
using antibodies specific for phosphorylated and non-
phosphorylated forms of the indicated proteins. The PI-3-
kinase and mTOR inhibitors blocked the phosphorylation
of elongation initiation factor 4E (eIF4E) on serine 209,
eIF4E-binding protein 1 (4E-BP1) on serine 65, as well as
ribosomal protein S6 (RPS6) at Ser235/236 (figure 4B).
The Mek/Erk inhibitor blocked the phosphorylation of
Mnk1 at Thr197/202 (figure 5A), an event that is known
to be Mek/Erk dependent [48]. However, phosphoryla-
tion of eIF4E was not affected by PD98059 treatment and
the subsequent inhibition of Mnk1, but it was prevented
by Rapamycin which blocks p70S6 kinase activation (fig-
ure 4B, 4C). This indicates that eIF4E phosphorylation
was due to p70S6 kinase and not Mnk1.

The ability of a conditionally active-Akt to activate p70S6
kinase was tested (figure 4D). HC11 cells were transfected
with CA-Akt or a vector control plasmid. The expression of

conditionally active-Akt in presence of tamoxifen resulted
in constitutive activation of p70S6 kinase. Therefore, both
EGF stimulation and constitutive Akt can activate p70S6
kinase. Hence, the evidence suggests that one mechanism
by which EGF-induced PI-3-kinase activation prevents lac-
togenic differentiation in HC11 mammary epithelial cells
may involve the Akt-dependent activation of p70S6
kinase, and the subsequent phosphorylation of RPS6,
eIF4E, and 4E-BP1.

The role of insulin signal to the PI-3-kinase and mTOR in 
HC11 cells
Because the growth media, the differentiation media and
the starvation media used in the above experiments con-
tained insulin, the results addressed the role of the PI-3-
kinase pathway in transmitting EGF-induced signals to
Akt, mTOR and p70S6 kinase without considering the
potential of insulin to activate the same pathways. To
address this question HC11 cells were starved of insulin as

The effect of PI-3-kinase and mTOR inhibitors on insulin and EGF signal transduction pathway in HC11 cellsFigure 5
The effect of PI-3-kinase and mTOR inhibitors on insulin and EGF signal transduction pathway in HC11 cells. HC11 cells were 
serum starved overnight in the absence of insulin and the next day the cells were incubated four hours with LY294002 (5 μM) 
or Rapamycin (25 nM) prior to re-stimulation with insulin (5 μg/ml) or EGF (100 ng/ml) for times indicated. Lysates were har-
vested and analyzed by western blotting using antibodies specific for phosphorylated and non-phosphorylated forms of the indi-
cated proteins.
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well as serum and growth factor, then stimulated with
either insulin or EGF in the presence of low levels of PI-3-
kinase or mTOR inhibitors. The results in figure 5 detect
differences in the p70S6 kinase phosphorylation and
kinase activity toward RPS6 that was dictated by the stim-
ulatory agent. Insulin stimulation of Akt (Thr 308 and Ser
473) was PI-3-kinase-dependent, and phosphorylation of
p70S6 kinase (Thr389) was PI-3-kinase and mTOR-
dependent. Insulin stimulation resulted in PI-3-kinase-
and mTOR-dependent RPS6 phosphorylation. In con-
trast, the stimulation of RPS6 phosphorylation by EGF
was partially independent of PI-3-kinase-and mTOR path-
ways. This additional RPS6 phosphorylation correlated
with elevated p70S6 kinase phosphorylation at Thr 421
and Ser 424, the autoinhibitory site reported to contribute
to its activity in vivo [49]. Because higher levels of PI-3-
kinase and mTOR inhibitors completely eliminated this
signal (figure 4B and 4C), it appears that EGF requires Akt
and mTOR to activate p70S6 kinase and that residual low
level activity of p70S6 kinase can be enhanced by EGF-
dependent phosphorylation at Thr 421 and Ser 424.
Hence, we conclude that both insulin and EGF stimulate
the PI-3-kinase-Akt-mTOR-p70S6 kinase pathway, but
that EGF modulates p70S6 kinase activity in a manner not
activated by insulin.

In addition, differences in the phosphorylation of 4E-BP1
and elF4E were detected in response to insulin and EGF
(figure 5). There is mTOR-independent 4E-BP1 and elF4E
phosphorylation in response to insulin that is not
detected with EGF, suggesting that insulin stimulation of
these pathways may be different from that seen with EGF
i.e. that insulin signaling may phosphorylate these sub-
strates via a pathway other than mTOR.

Dexamethasone contributes to the inhibition of p70S6 
kinase during lactogenic differentiation of HC11 cells
The studies described above addressed short-term stimu-
lation of cells with EGF. Next, the long-term activation of
signal transduction pathways dependent on PI-3-kinase
stimulation was examined in HC11 cells (figure 6A).
HC11 cells were treated with lactogenic hormone mix in
the presence or absence of EGF and LY294002 for times
up to 24 hours. Cell lysates were analyzed by western blot-
ting for phosphorylation of p70S6 kinase. In the HC11
cells stimulated with the lactogenic hormone mix DIP the
activation of p70S6 kinase on threonine 389 completely
diminished by approximately 12 hours, whereas in the
cells stimulated with DIP in the presence of EGF the acti-
vation of p70S6 kinase persisted for 24 hours. In contrast,
the cells exposed to DIP and EGF with LY294002 showed
no p70S6 kinase activation at any time point after induc-
tion. These results suggest that blocking the PI-3-kinase
pathway at the time of DIP-induction enhanced differen-
tiation via a similar mechanism to that described above in

short term assays, i.e. inactivation of Akt/mTOR/p70S6
kinase.

Dexamethasone is a component of the lactogenic hor-
mone mix, DIP. Because dexamethasone can inhibit
p70S6 kinase phosphorylation and protein synthesis [50],
we investigated the ability of dexamethasone alone to
inhibit the phosphorylation of p70S6 kinase (figure 6B).
HC11 cells were exposed to dexamethasone in the pres-
ence or absence of EGF and LY294002 for times up to 24
hours. The lysates were analyzed by western blotting for
phosphorylation of p70S6 kinase. In the HC11 cells
treated with dexamethasone the phosphorylation of
p70S6 kinase decreased during the first 12 hours, while
cells exposed to a combination of dexamethasone and
EGF showed p70S6 kinase phosphorylation through 24
hours. The cells treated with dexamethasone and EGF plus
LY294002 exhibited no p70S6 kinase activation at any
time point after induction. These results suggest that dex-
amethasone inhibits p70S6 kinase phosphorylaton and
that the presence of EGF overcomes the inhibitory effect
of dexamethasone on this pathway.

Discussion
Mammary gland development can be divided into seven
stages: embryonic, postnatal, juvenile, puberty, preg-
nancy, lactation, and involution. One of the leading risk
factors for breast cancer is nullparity [51]. Hence, the
delineation of factors that regulate lactogenesis (terminal
differentiation) is important in understanding the etiol-
ogy of breast cancer.

Excess activation of signaling pathways downstream of
the epidermal growth factor receptor, ErbB1, has been
directly linked to breast cancer development and chemo-
therapeutic resistance [52]. While EGF is required for nor-
mal mammary epithelial cell proliferation, it has been
shown to inhibit lactogenic differentiation of HC11 mam-
mary epithelial cells both in vitro and in vivo, concomitant
with stimulation of the Ras/Mek/Erk and the PI-3-kinase
pathways [6,8,9,12]. The PI-3-kinase pathway is impor-
tant in tumorigenesis in several ways. Aberrant PI-3-
kinase activation has been demonstrated to promote both
proliferation and survival of transformed cells, including
those exhibiting EGF-dependent transformation. The
mutation and deregulation of PI-3-kinase pathway com-
ponents has recently been linked to a number of human
malignancies [33-38] and breast cancer associated muta-
tions of the p110 catalytic subunit of PI-3-kinase were
oncogenic when tested in immortalized mammary epi-
thelial cells [53]. Elevated Akt levels have been found in
breast, ovarian, colon and thyroid cancers [54,55].

The data reported here confirm and extend our earlier
results indicating that PI-3-kinase inhibitors rescue the
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The long-term activation of the p70S6 kinase pathway in HC11 cellsFigure 6
The long-term activation of the p70S6 kinase pathway in HC11 cells. A: HC11 cells were induced to differentiate in DIP-induc-
tion media with and without EGF (10 μg/ml) and LY294002 (10 μM) for times up to 24 hours. Lysates were harvested and ana-
lyzed by western blotting using antibodies specific for phosphorylated p70S6 kinase B: HC11 cells were exposed to 
dexamethasone (1 μM) with and without EGF (10 μM) and LY294002 (10 μM) for times up to 24 hours. Lysates were har-
vested and analyzed by western blotting using antibodies specific for phosphorylated p70S6 kinase or actin. The arrows indicate 
the position of the phospho-p70S6 kinase band.
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EGF-induced block of β-casein promotor-regulated luci-
ferase activity, β-casein transcription and mammosphere
formation in lactogen-treated HC11 cells. Furthermore,
the expression of a conditionally active-Akt1 blocked lac-
togenic differentiation, whereas dominant negative-Akt1
enhanced it. These results indicate that EGF blocks HC11
lactogenic differentiation in part via a PI-3-kinase/Akt
dependent mechanism. In addition, our data indicate that
in HC11 cells PI-3-kinase regulated the EGF-dependent
transcription of cyclin D1 and osteopontin (OPN) (Wang,
Galbaugh, and Cutler, unpublished observation), both of
which are regulated by the PI-3-kinase pathway in tumor
cells [56,57]. However, PI-3-kinase inhibition did not
entirely prevent the EGF-induced reduction in transcrip-
tion of differentiation specific target genes. For example,
EGF blocks transcription of prolactin-induced protein,
PIP, via the Mek/Erk and not PI-3-kinase pathways
(Wang, Galbaugh and Cutler, unpublished data). Conse-
quently, we conclude that the involvement of the PI-3-
kinase pathway in blocking lactogenic differentiation is
partly independent of Stat5-induced transcriptional
changes.

The inhibitory effect of PI-3-kinase on β-casein transcrip-
tion and β-casein promotor luciferase activity is likely
through combined mechanisms involving signals medi-
ated by prolactin and dexamethasone. Dexamethasone
can play a role in inhibiting the phosphorylation of p70S6
kinase thereby decreasing protein synthesis [50]. Our
study reveals that dexamethasone inhibits the phosphor-
ylation of p70S6 kinase in HC11 cells. This suggests a role
for dexamethasone in lactogenic hormone-induced differ-
entiation in addition to its role in activating glucocorti-
coid receptor, which acts synergistically with Stat5 to
initiate β-casein transcription [58-60]. PI-3-kinase medi-
ated translational control influences differentiation in
erythroid precursers. Stem cell factor delays differentia-
tion of erythroid precursers in part by activating PI-3-
kinase pathway resulting in 4E-BP1 phosphorylation and
the subsequent recruitment of growth-specific mRNAs
into polysomes [61]; and ectopic expression of eIF4E in
these cells has the same effect [62]. Our work has not
identified specific protein targets whose synthesis is trans-
lationally regulated by the PI-3-kinase/Akt/mTOR path-
way in HC11 cells. However, a recent study demonstrated
that ErbB2 increases the synthesis of the vascular endothe-
lial growth factor (VEGF) protein via the activation of
mTOR and p70S6K in human breast cancer cells [63]. This
finding suggests that it may be essential to down regulate
VEGF or other growth factors in order for lactogenic differ-
entiation to proceed. Also, SOCS-1 can be translationally
repressed via a cap-dependent mechanism [64], suggest-
ing that another effect of activation of PI-3-kinase path-
way may be the elevation of SOCS-1 and inhibition of
prolactin-induced Jak-Stat signaling.

Through the use of chemical inhibitors, alone or in com-
bination, our data revealed that the PI-3-kinase and Mek/
Erk signaling pathways are independent and synergistic in
their block of HC11 lactogenic differentiation. We deter-
mined that EGF activates phosphorylation of Akt, mTOR,
p70S6 kinase, ribosomal protein S6, eIF4E and 4E-BP1 in
a PI-3-kinase dependent manner, and PI-3-kinase activa-
tion may prevent lactogenic differentiation in HC11
mammary epithelial cells by regulating the synthesis of
proteins.

While several studies have suggested that Erk activation
can be regulated through the PI-3-kinase pathway [65,66]
our data demonstrated that EGF stimulation of Erk activa-
tion in HC11 mammary epithelial cells was not altered by
blocking PI-3-kinase signaling with LY294002. In addi-
tion, our previous work revealed that PI-3-kinase activa-
tion by EGF receptor proceeded without requiring Ras
activation [6]. A report by Bailey et al. demonstrated that
low level activation of Akt by prolactin stimulation
blocked the inhibitory effects of exogenous TGFβ on
HC11 cells [42]. Our study examined the effects of
stronger Akt activation by mitogen rather than by TGFβ,
which induces apoptosis in HC11 cells. While no previous
studies have addressed the mechanism by which PI-3-
kinase blocks lactogenic differentiation, we demonstrated
that the inhibition of PI-3-K, Akt or mTOR blocked the
activation of p70S6 kinase and its downstream targets. We
also demonstrated that the expression of a conditionally
active-Akt1 leads to the constitutive activation of p70S6
kinase. Interestingly, we discovered that PDK1 is constitu-
tively phosphorylated in HC11 cells and this is not
blocked by LY294002. While PDK1 has been shown to
directly activate p70S6 kinase independently of Akt [67],
our results indicate that the activation of p70S6 kinase is
dependent on Akt and mTOR in HC11 cells.

The present study enhances our knowledge of HC11
mammary epithelial differentiation in several ways. We
demonstrated that Akt activation can inhibit lactogenic
hormone induced differentiation in mammary epithelial
cells. Two previous studies questioned whether PI-3-
kinase activation of Akt in normal mammary epithelial
cells is sufficient for cellular transformation [68,69]. Our
observation that blocking the activation of PI-3-kinase
restored mammosphere formation, which was inhibited
by EGF, is in agreement with reports that conditionally
active-Akt1 promotes large and misshapen acinar struc-
tures in MCF-10A cells [39,40]. However, the results
obtained from cell culture experiments are somewhat dif-
ferent from in vivo analysis of Akt. Akt is expressed during
lactation in vivo at a point when levels of other kinases are
diminishing [70]. The expression presumably plays a crit-
ical function in cell survival at this point in mammary dif-
ferentiation. The transgenic expression of MMTV-CA-Akt
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enhanced/temporally extended the expression of β-casein
and resulted in more differentiated cells surviving in the
tissue during lactation again at the time when other recep-
tor tyrosine kinases were nearly absent [71,72]. Recently
Jankiewitz et al. demonstrated that treatment of lactating
mice with rapamycin decreased the size of the mammary
glands and inhibited HC11 differentiation by blocking
lactogenic hormone-induced expression of the transcrip-
tional regulator Id2 [73]. Our HC11 experiments were
performed in immortalized HC11 cells grown in the pres-
ence of insulin and fetal bovine serum, sources of stimu-
lation for other receptor tyrosine kinases including those
required for cell survival. We also found that blocking PI-
3-kinase signaling with chemical inhibitors in the absence
of additional mitogen decreased HC11 lactogenic differ-
entiation. However, the stimulation of downstream path-
ways by EGF or CA-Akt was in excess of the normal cell
survival signaling and thereby altered cell responses
accordingly. Our results indicate that activation of p70S6
kinase under those conditions is detrimental to HC11 lac-
togenic differentiation. While this study presents a com-
prehensive investigation of the role that EGF-induced PI-
3-kinase and Akt play in HC11 lactogenic differentiation,
further studies in animal models will provide a greater
understanding of the role of PI-3-kinase and p70S6 kinase
on ErbB1 signals during hormonal regulation of the
mammary gland.

Conclusion
Our results indicate that EGF-induced activation of PI-3-
kinase results in Akt- and mTOR-dependent-p70S6 kinase
phosphorylation in HC11 cells. The EGF-induced activa-
tion of PI-3-kinase-Akt-mTOR regulates phosphorylation
of molecules including RPS6, eIF4E and 4E-BP1 that influ-
ence translational control. The activation of this pathway
contributes to the inhibition of HC11 lactogenic differen-
tiation by EGF.

Methods
Cell culture and lactogenic hormone induced 
differentiation
HC11 and HC11-luci mouse mammary epithelial cell
lines were a generous gift from Dr. Nancy Hynes [9,74].
The HC11-luci cell line contains a luciferase gene under
the control of a β-casein promotor [7,75]. The cells were
maintained in growth media: RPMI 1640 medium aug-
mented with 10% fetal bovine serum (FBS), 5 μg/ml Insu-
lin, 10 ng/ml epidermal growth factor (EGF), 10 mM
HEPES, Pen-Strep, and 2 mM Glutamine. The technique
for lactogenic differentiation of HC11 cells was described
previously [6,9,74]. Briefly, HC11 and HC11-luci cells
were grown to confluence and maintained 1–3 days in
RPMI 1640 growth media. EGF-containing media was
removed, cells were rinsed with media containing lacking
EGF, and incubated in RPMI differentiation media,

referred to as DIP, containing either 1% FBS or 10% FBS,
dexamethasone (10-6 M), 5 μg/ml Insulin, and 5 μg/ml
ovine prolactin (PRL)(Sigma). The cells were harvested
and processed using stated procedures. HC11 differentia-
tion was characterized by mammosphere formation and
β-casein transcription. Mammospheres formation was
observed up to 96 hours post DIP treatment [4,5,76].
Mammospheres were enumerated by microscope observa-
tion and photographed as described previously [6]. The
number of mammospheres was determined by counting
the number of mammospheres per low power field and
determining the mean of five fields. β-casein transcription
was assessed via northern blotting. HC11-luci lactogenic
differentiation was characterized via β-casein promotor
driven luciferase activity.

Transfection of cells
The HC11 and HC11-luci cells were transiently trans-
fected with either a conditionally active-Akt-1 (myrΔ4-
129-ER or referred to CA-Akt in the paper) or a control
construct (pCDNA3.1), which were generously provided
by Dr. Richard Roth [46]. The conditionally active-Akt-1
was created by attaching a srcmyristoylation signal to the
amino terminus of a variant Akt that lacked the PH
domain and carried an HA epitope tag at its carboxyl ter-
minus. This was then fused in frame to the hormone-
binding domain of a mutant form of the murine estrogen
receptor therefore making it responsive to the synthetic
steroid 4-hydroxy-tamoxifen [46]. The cells were trans-
fected at 80% confluence in 35 mm wells with 3 μg of
plasmid DNA and Gene Juice (Novagen) as recom-
mended by manufacturer.

Adenovirus propagation, titration and infection
HEK-293 cells (ATCC) used for virus propagation were
maintained in DMEM medium augmented with 10% FBS,
Pen-Strep, and 2 mM Glutamine. 25 × T-175 flasks of 293
cells were grown to 90% confluence and infected with
either a replication defective Lac Z control adenovirus or
DN-Akt1 (DN-Akt) adenovirus kindly provided by Dr.
Kenneth Walsh [47]. The DN-Akt1 vector contains alanine
substitutions at the active site (residue179) as well as both
regulatory phosphorylation sites (Thr308, Ser473) and a
HA-Tag at its N-terminus [47]. Cells were harvested 48
hours post infection, pelleted and resuspended in PBS.
Following four freeze-thaw cycles the virus was purified
via a cesium chloride gradient and dialyzed against a
buffer containing 10 mM Tris, 2 mM MgCl2, 100 mM
NaCl and 5% Glycerol. 293 cells were used for titration of
the virus: cells were infected with serial dilutions of virus
ranging from 10-2 to 10-8 and cytopathic effect (CPE) was
assessed at 24 and 48 hours. HC11 and HC11-luci cells
were infected with either the Lac-Z control adenovirus or
DN-Akt1 adenovirus at MOI of 10. After 5 hours virus was
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removed, regular growth media was added and cells were
incubated 16–24 hours prior to treatment.

Luciferase assays
The luciferase technique was performed as previously
described [6]. Inhibitors were added alone or in combina-
tion at the time of induction of lactogenisis at previously
determined optimal concentrations (LY294002 10 μM,
SB203580 10 μM, Rapamycin 50 nM, PD98059 20 μM).
Luciferase activity was assayed 48 hours post-induction
using a commercial luciferase kit (Luciferase Assay Sys-
tems, Promega) and a Thermolab System luminometer
(Acscent FL). Luciferase activity was normalized to protein
concentration as determined by BCA assay (Pierce, Rock-
ford, IL). Results were presented as relative units calcu-
lated from the mean of three determinations.

Western blots
HC11 cells were lysed in either RIPA buffer (1% NP40,
0.5% DOC, 0.1% SDS, 150 mM NaCl, 5 mM MgCl2 and
25 mM Hepes) or a high salt buffer [60]. Each lysis buffer
contained AEBSF (20 μg/ml), aprotinin (5 μg/ml), leu-
peptin (5 μg/ml), β-glycerol phosphate (100 μM), and
NaVAO4 (1 mM). For western blots equivalent amounts of
protein were separated by SDS-PAGE and transferred to
PVDF filters. The filters were blocked in 0.6% Blotto for
one hour and then incubated with the appropriate pri-
mary antibody for one hour at room temperature or over-
night at 4°C on a rocker. Blots were incubated with
appropriate HRP-conjugated secondary antibody for 1
hour at room temperature and washed three times for 10
minutes in TBST. Chemiluminescence was detected with
either ECL (Amersham) or Supersignal (Peirce) using
Classic Blue Sensitive x-ray film (Midwest Scientific) or
collection of images on a CCD camera. All blots were
quantitated via scanning densitometry (Fuji, Image gauge
software). Antibodies include anti-phospho-Akt (Ser 473
and Thr308) and anti-Akt (Cell Signaling Technology),
anti-phospho-GSK3β (Cell Signaling Technology), anti-
phospho-Erk (Cell signaling Technology), anti-
Erk1(Santa Cruz Biotechnology), anti-phospho-p38 (Cell
Signaling Technology), anti-p38 (Santa Cruz Biotechnol-
ogy), anti-phospho-Jnk (Cell Signaling Technology), anti-
Jnk (Santa Cruz Biotechnology), anti-phospho-p70S6
kinase (Thr389) or (Thr 421/Ser 424) (Cell Signaling
Technology), anti-p70S6 kinase (Cell Signaling Technol-
ogy), anti-phospho-eIF4E (Ser209) (Cell Signaling Tech-
nology), anti-phospho-4E-BP1 (Ser65) (Cell Signaling
Technology), anti-phospho-ribosomal protein S6
(Ser235/236) (Cell Signaling Technology), anti-phospho-
Mnk1 (Thr197/202), anti-Pan Ras (Calbiochem), anti-β-
Actin (clone AC-15) (Sigma) and anti-HA (clone 12CA5)
(Roche). Antibodies were used at manufacturer's dilution
recommendation.

Northern blot
Total cell RNA was extracted and 7.5 ug of RNA was sepa-
rated on a 1% agarose-formaldehyde gel and transferred
to a nylon filter. Blots were hybridized with probes for
mouseβ-casein and mouse β-Actin as described previously
[6].
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