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Abstract
Background: Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by a
CAG repeat expansion in the HD gene. The huntingtin protein expressed from HD has an unknown
function but is suggested to interact with proteins involved in the cell division machinery. The R6/
2 transgenic mouse is the most widely used model to study HD. In R6/2 fibroblast cultures, a
reduced mitotic index and high frequencies of multiple centrosomes and aneuploid cells have
recently been reported. Aneuploidy is normally a feature closely connected to neoplastic disease.
To further explore this unexpected aspect of HD, we studied cultures derived from 6- and 12-
week-old R6/2 fibroblasts, skeletal muscle cells, and liver cells.

Results: Cytogenetic analyses revealed a high frequency of polyploid cells in cultures from both
R6/2 and wild-type mice with the greatest proportions of polyploid cells in cultures derived from
skeletal muscle cells of both genotypes. The presence of polyploid cells in skeletal muscle in vivo
was confirmed by fluorescence in situ hybridisation with centromeric probes. Enlarged and
supernumerary centrosomes were found in cultures from both R6/2 and wild-type mice. However,
no aneuploid cells could be found in any of the tissues.

Conclusion: We conclude that polyploid cells are found in fibroblast and skeletal muscle cultures
derived from both R6/2 and wild-type littermate mice and that aneuploidy is unlikely to be a
hallmark of HD.

Background
Huntington's disease (HD) is a hereditary neurodegener-
ative disorder caused by a CAG repeat expansion in the
huntingtin gene [1]. It is characterized by personality
changes, motor disturbances, cognitive decline, and
weight loss [2]. Neuropathologically, the disease is
reflected by neurodegeneration, primarily in the neostria-
tum, the cerebral cortex and the hypothalamus, with the

appearance of cytoplasmic and intranuclear aggregates of
misfolded huntingtin in neurons [3]. In HD patients and
transgenic models of the disease, wild-type (wt) and
mutant huntingtin are expressed in most tissues [4]. Nei-
ther the pathogenetic mechanism of HD nor the normal
function of huntingtin is fully understood. Huntingtin
interacts with key players of the mitotic machinery, such
as the microtubuli and the centrosomes [5]. Interestingly,
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when huntingtin was identified in 1993 [1], one of its few
known sequence motifs with established functions was
the HEAT repeats [6]. These sequences are also found in
proteins involved in mitotic progression and chromo-
somal dynamics [7]. The R6/2 transgenic mouse is the
most widely used model to study HD. It expresses exon 1
of the human HD gene and displays several features of
HD such as motor dysfunction, neuronal huntingtin
aggregates, weight loss, and premature death at around 14
weeks of age [8]. In fibroblast cultures derived from R6/2
mice, a reduced mitotic index and high frequencies of
cells with multiple centrosomes and aneuploidy have
recently been reported [9]. Aneuploidy is characteristic for

neoplastic cells, cells exposed to carcinogens, and cells
from cancer-prone patients with hereditary chromosome
instability syndromes. However, the phenomenon has
rarely, if ever, been described in neurodegenerative dis-
ease in the absence of an increased risk for neoplasia. To
further explore this unexpected aspect of HD, we have
now performed extensive cytogenetic analyses of fibrob-
lasts, skeletal muscle cells, and liver cells from 6- and 12-
week-old R6/2 and wt littermate mice. We found no evi-
dence of aneuploidy in R6/2 cells, but a suprisingly high
frequency of polyploid cells in cultures derived from both
R6/2 and wt littermate mice.

Table 1: Cytogenetic data.

Mouse 
number

Biopsy site Passage 
number

Ploidy < 2n Ploidy = 2n Ploidy 2n-4n Ploidy = 4n Ploidy > 4n Total 
number of 
cells 
analyzed

Polyploid 
cells (%)a

Wild-type 
week 6
30 AM 1 1 29 1 11 10 52 19
31 PF 1 2 46 0 11 0 59 0
31 AM 1 1 26 0 19 4 50 8.0
31 AM 4 0 3 0 3 5 11 45

Wild-type 
week 12
76 EL 1 2 46 0 4 0 52 0
76 EL 5 0 50 0 17 0 67 0
76 PF 1 0 42 0 7 1 50 2.0
76 AM 1 0 10 0 1 1 12 8.3
77 EL 1 0 60 0 4 0 64 0
77 EL 5 0 22 3 20 5 50 10
77 EL 1 0 46 0 5 1 52 19
77 AM 1 0 85 0 30 2 117 1.7

R6/2 week 
6

38 PF 1 0 45 0 5 0 50 0
38 AM 1 0 39 0 12 5 56 8.9
38 AM 4 0 32 0 32 1 65 1.5
38 LC 1 0 24 2 17 7 50 14
39 AM 1 0 33 1 12 4 50 8.0
39 AM 4 0 25 0 30 3 58 5.2

R6/2 week 
12
78 EL 1 1 50 0 4 0 55 0
78 EL 5 0 39 1 19 3 62 4.8
78 PF 1 0 53 0 3 0 56 0
78 AM 1 0 30 0 4 1 35 2.9
79 PF 1 0 70 1 7 0 78 0
79 AM 1 0 50 1 7 0 58 0

a Cells with a ploidy level above the tetraploid (4n). AM, abdominal muscle cells; PF, peritoneal fat fibroblasts; EL, ear lobe fibroblasts; LC, liver cells.
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Results
Cytogenetic analysis
Fresh biopsies were taken from ear lobes, abdominal skel-
etal muscles, peritoneal fat, and liver from sacrificed six-
and 12-week-old mice (Table 1). Cells from R6/2 and wt
littemate mice grew equally well in culture up to five pas-
sages, after which the culture process was terminated.
Analysis of metaphase peritoneal fat fibroblasts, skeletal
muscle cells, and liver cells from 6-week-old R6/2 and wt
littermate mice showed a normal diploid chromosome
complement in the vast majority of cells and a tetraploid
chromosome number in 3–32% of the cells. Cells taken
from the abdominal skeletal muscle and the liver also
showed 2–19% polyploid cells, with chromosome num-
bers up to the decaploid level (N = 400; Fig. 1a). These
polyploid cells were present in biopsies both from R6/2
and wt mice. The highest frequencies were found in
abdominal muscle biopsies from wt animals. After in vitro
propagation up to four passages of muscle cells from one
wt and two R6/2 mice, the frequency of polyploid cells
had increased, compared to the first passage, from 8% to
45% in the wt culture, including cells with up to 600 chro-
mosomes, whereas the frequency of such cells had
decreased in one of the R6/2 cultures and was largely
unchanged in the other. No more than four aneuploid
cells were found in any of the cultures. These invariably
showed loss of only one or two chromosomes compared
to the diploid or tetraploid levels, or loss of up to four
chromosomes compared to polyploid levels. In skeletal
muscle cells, ear lobe fibroblasts, and peritoneal fat
fibroblasts from 12-week-old animals, similar results were
obtained. No more than four aneuploid cells (including
hypodiploid, hypotetraploid, and hypopolyploid cells)
were detected in any of the week-12 cultures.

Centrosome morphology and mitotic polarity
Centrosome detection was performed on cultured skeletal
muscle cells, peritoneal fat fibroblasts, and ear lobe
fibroblasts (passage 1 and also passage 5 of the ear lobe
biopsies) from 12-week-old mice. This revealed abnor-
mally enlarged centrosomes (> 2 centrioles) in a small
population of cells in all cases (1–4%). A proportion of
these cells (0.5–2% out of all cells) had three or four cen-
trosomes, whereas the remaining cells had normal centro-
some numbers (one or two; Fig 1b and 1c). There were no
significant differences between wt and R6/2 cells (p >
0.05; > 100 cells analysed from each culture). Because
supernumerary centrosomes have been associated with
spindle multipolarity at mitosis, we also analysed cell
division figures from the cultured biopsies of 6-week and
12-week mice after haematoxylin-eosin staining. Tripolar
metaphase and anaphase configurations were detected in
cells from the muscle biopsies from one of the 6-week old
R6/2 mice and one of the 6-week old wt mice (2/160 cells

and 2/232 cells respectively; Fig. 1d) but not in cells from
any of the other biopsies (>150 cells analysed per biopsy).

Identification of polyploid cells in vivo
In both R6/2 and wt mice, the highest rate of polyploidy
was noted in cultures established from the abdominal
muscle. To corroborate these findings in vivo and to iden-
tify the cell type harbouring an abnormally high chromo-
some number, 10 µm tissue sections from two wt and two
R6/2 mice were first examined after haematoxylin-eosin
staining. This revealed a low frequency (1–2%) of nuclei
with diameters three to four times the normal range resid-
ing in the striated muscle fibres (Fig. 1e). Such enlarged
nuclei were neither found in the adjacent fibrous tissue,
nor in the vascular tissue penetrating the muscles. To
exclude that these nuclei were simply artifacts caused by
oblique cutting of the sections, fluorescence in situ hybrid-
ization (FISH) with a murine pan-centromeric probe was
performed on muscle tissue sections from one wt mouse.
As expected, this revealed two chromocenters in the
majority of nuclei (536/788 = 68%) and small popula-
tions of nuclei with one (10%), three (9%), or four (9%)
chromocenters. These signal configurations were also
found in the adjacent fibrous tissues. However, there was
also a small population (4%) of large nuclei with seven or
eight chromocenters (Fig. 1f), all of which were present in
striated muscle fibres. Nuclei with > 4 chromocenters were
also found in abdominal muscle fibres from the other 12-
week-old wt mouse and the two R6/2 mice, in propor-
tions of 1–4%.

Discussion
The function of normal huntingtin is not fully elucidated.
Sequences of known functions within huntingtin include
HEAT repeats, which are involved in chromosome
dynamics [7]. In HD, the expanded polyglutamine in
huntingtin is thought to alter its protein interactions [5].
A previous study described high frequencies of multiple
centrosomes and aneuploidy in fibroblast lines derived
from R6/2 mice and HD patients [9]. Aneuploidy is
closely connected to neoplastic disease, as the vast major-
ity of tumours exhibit acquired chromosome abnormali-
ties [10]. Moreover, most inherited chromosome
instability syndromes are associated with a significantly
elevated risk of cancer. However, the risk of malignant
tumours has been shown to be lower in HD patients than
in the normal population [11]. To explore this ostensibly
paradoxical situation, we performed cytogenetic analyses
of cultured cells from multiple tissues in R6/2 mice.
Although a high number of cells were analysed, we could
find only minute populations of anueploid cells, occur-
ring at similar frequencies in wt and R6/2 mice. These
were typically hypodiploid, hypotetraploid, or hypopoly-
ploid with loss of only few chromosomes, indicating that
they were most probably due to artifactual loss of
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Cytogenetic and immunofluorescent analysisFigure 1
Cytogenetic and immunofluorescent analysis. G-banded polyploid metaphase cell from wt31 abdominal muscle (a). Mul-
tiple centrosomes (red) in cells from the peritoneal fat of R6/2 78 (b; green autofluorescence indicates cytoplasm) and from the 
abdominal muscle of wt77 (c; autofluorescence removed for clarity). Tripolar anaphase cell visualized by haematoxylin-eosin 
staining in a cell (passage 1) from the abdominal muscle of wt30 (d). Large nucleus (arrow) in a skeletal muscle fibre from wt77 
(e). One nucleus with two chromocenters (arrow; green) and one with eight chromocenters (arrowhead) in a skeletal muscle 
fibre from wt76 (f).
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chromosomes during preparation. Hence, we found no
convincing evidence for aneuploidy. The reason for the
discrepancy of results between our study and the previous
report [9] may arise from differences in the genetic back-
ground of the R6/2 colonies, different culture procedures,
or differences in the methods for chromosome prepara-
tion. Furthermore, in our study, we defined aneuploidy
according to the ISCN (1995) recommendations [12],
whereas the previous study defined aneuploid cells as any
cells harboring a chromosome number different than 2n
= 40. Some of the cells scored as polyploid in our study
might thus have been scored as "aneuploid" in the previ-
ous study by Sathasivam et al [9]. We found small popu-
lations of highly polyploid cells in liver, fibroblast and
skeletal muscle cultures derived from R6/2 and wt litter-
mate mice. In these cultures, derived from two mice per
genotype, there was no difference in the frequency of
polyploid cells between R6/2 and wt mice.

Polyploid cells have been found in several murine tissue
including vascular smooth muscle [13], ovaries [14], car-
diomyocytes [15], colonic fibroblasts [16], liver cells,
bladder epithelial cells, uterine decidua cells, trophob-
lasts, and megakaryocytes [17]. Our study supports that
polyploidy is a normally occurring phenomenon in many
murine tissues and shows that skeletal muscle cells may
have an unusually high frequency of polyploid cells. An
earlier investigation describes a high frequency of multi-
ple centrosomes in fibroblast cell lines from R6/2 mice
and from HD patients [9]. In the present study, we found
low frequencies of cells with multiple centrosomes in cul-
tures from both R6/2 and wt littermate mice. In neoplastic
cells, supernumerary centrosomes are associated with
multi-polar cell divisions and have traditionally been sug-
gested to generate aneuploid daughter cells [18]. Some-
what surprisingly, we found multipolar mitoses at a low
frequency in skeletal muscle cultures from both geno-
types. To our knowledge, this type of mitotic aberration
has not been shown previously in non-neoplastic cells.
Whether similar mitotic aberrations also occur in murine
skeletal muscle in vivo remains to be established.

Conclusion
The present study shows that even though polyploidy may
occur to a similar extent in wt and R6/2 cultured somatic
cells, aneuploidy does not occur at a high frequency in R6/
2 cells.

Methods
Transgenic mice
Transgenic HD mice of the R6/2 line were originally pur-
chased from Jackson Laboratories (Bar Harbor, ME, USA)
and the colony was maintained by breeding heterozygous
R6/2 males with females from their background strain (F1
of CBA × C57Bl/6). Tails of the offspring were used to

obtain DNA for determination of the genotype using a
polymerase chain reaction assay [8]. The mice exhibit
around 150 CAG repeats in the exon 1 of the HD gene.
The mice were housed in groups with ad libitum access to
food and water at a 12 h light/dark cycle and sacrificed at
either 6 or 12 weeks of age using halothane anaesthesia.
The experimental procedures were approved by the Ethi-
cal Committee at Lund University.

Cell culture and morphological analyses
Cells were cultured in RPMI 1640 medium, supplemented
with 17% bovine serum, glutamine, and antibiotics.
Chromosome preparation, G-banding, analysis of mitotic
morphology, haematoxylin-eosin staining, and FISH were
performed according to standard methods [19]. The
number of metaphase cells analyzed from each biopsy,
genotype, and age are specified in Table 1. Mouse major
satellite sequences were detected in at least 500 interphase
nuclei per biopsy using commercially available probes
(Cambio, Cambridge, UK). Centrosome morphology was
visualized by immuno-fluorescence using a monoclonal
anti-γ-tubulin antibody (1:1000, GTU-88, Sigma, St.
Louis, MS). At least 100 cells from each biopsy were
analysed.

List of abbreviations
FISH fluorescence in situ hybridization

HD Huntington's disease

Wt wild-type
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