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Abstract
Background:  The cell surface undergoes continuous change during cell movement. This is
characterized by transient protrusion and partial or complete retraction of microspikes, filopodia,
and lamellipodia. This requires a dynamic actin cytoskeleton, moesin, components of Rho-mediated
signal pathways, rearrangement of membrane constituents and the formation of focal adhesion
sites. While the immunofluorescence distribution of endogenous moesin is that of a membrane-
bound molecule with marked enhancement in some but not all microextensions, the C-terminal
fragment of moesin co-distributes with filamentous actin consistent with its actin-binding activity.
By taking advantage of this property we studied the spontaneous protrusive activity of live NIH3T3
cells, expressing a fusion of GFP and the C-terminal domain of moesin.

Results:  C-moesin-GFP localized to stress fibers and was enriched in actively protruding cellular
regions such as filopodia or lamellipodia. This localization was reversibly affected by cytochalasin
D. Multiple types of cytoskeletal rearrangements were observed that occurred independent of
each other in adjacent regions of the cell surface. Assembly and disassembly of actin filaments
occurred repeatedly within the same space and was correlated with either membrane protrusion
and retraction, or no change in shape when microextensions were adherent.

Conclusions:  Shape alone provided an inadequate criterion for distinguishing between retraction
fibers and advancing, retracting or stable filopodia. Fluorescence imaging of C-moesin-GFP,
however, paralleled the rapid and dynamic changes of the actin cytoskeleton in microextensions.
Regional regulatory control is implicated because opposite changes occurred in close proximity and
presumably independent of each other. This new and sensitive tool should be useful for
investigating mechanisms of localized actin dynamics in the cell cortex.

Background
Lamellipodia, filopodia, retraction fibers and micros-

pikes are dynamic and often transient membraneous

structures on the surface of most cells. They can readily

be observed in spreading, moving and dividing cultured

cells, but also in migrating cells during development and

inflammation, or in invading cancer cells in vivo. Recent

evidence suggests that small GTPases of the rho family

regulate this protrusive cell surface activity [1,2]. Using a

permeabilized Swiss3T3 cell system, Mackay et al. [3]

have shown recently that moesin, and possibly its rela-

tives ezrin or radixin, are necessary for cellular responses
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induced by rho, namely the formation of lamellipodia,

focal adhesion complexes and stress fibers in serum-

starved fibroblasts. One or more members of this protein

family is also required for the formation of filopodia in
growth cones of neuronal cells [4], but how moesin inter-

acts with the actin cytoskeleton during the dynamic re-

structuring of the cell cortex has not been entirely

resolved.

One suggestion has been that moesin needs to be in an

"activated" form [5,6], a form capable to interact with ac-

tin filaments and to link filaments to sites in the plasma

membrane. Recently, Nakamura et al. [7,8] have de-

duced from in vitro co-sedimentation experiments with

cellular forms of moesin that phosphatidylinositides and

phosphorylation of a single threonine residue together

are needed to convert moesin from an inactive protein to

one that binds F-actin. Similarly, substitution of threo-

nine 558 with aspartate simulated phosphorylation and

activated F-actin binding of a recombinant form of

moesin. An allosteric change has been proposed as the

mechanism for this activation [8,9], since de-phosphor-
ylation with a specific phosphatase obliterates binding

[10]. When expressed in cells, epitope-tagged versions of

the C-terminal domain of ezrin co-distribute with stress

fibers in fixed cells [11]. This suggests that this peptide

fused to GFP could serve as a probe for the imaging of dy-

namic changes of the actin cytoskeleton and, at the same

time, of protrusive activity in live cells [12].

Results
Moesin is a major component of delicate microexten-

sions of the cell surface of NIH3T3 cells where it is fre-

quently co-localized by immunofluorescence with ezrin

and radixin [12,13,14,15]. Filopodia-like microexten-

sions can be defined by video microscopy as actively

growing and freely motile filopodia, as attached struc-

tures that do not move and that remain stable in length,

or as structures that are retracting and become shorter.
Immunofluorescence analysis of fixed cells does not dif-

ferentiate between these different forms of microexten-

sions. Furthermore, this technique shows that moesin

and F-actin are not uniformly distributed and not even

detectable in some instances in these structures (our un-

published results). To substantiate these findings in live

cells and to determine the reason for the variation in F-

actin content, the present study was undertaken.

C-moesin-GFP Binds to Actin Filaments Without Disrupt-
ing Microfilament Organization or Cell Behavior
To study changes in the actin cytoskeleton in microex-

tensions of living cells required a new approach. We uti-

lized the C-terminal domain of moesin fused to GFP for

imaging, since the structure contains a high affinity

binding site for F-actin and since previous results had

shown co-distribution of this domain with filamentous

actin [11,13,16,17]. When expressed in NIH3T3 cells, C-

moesin-GFP most prominently decorated stress fibers

regardless of level of expression (Figure 1b, 1d) and re-

gardless of whether GFP was positioned at the N- or C-
terminus of the C-moesin fragment. As expected, dou-

ble-staining of fixed, C-moesin-GFP transfected cells

with TRITC-phalloidin yielded precisely overlapping im-

ages. The intracellular structures visualized by C-moes-

in-GFP also included bundles and networks of F-actin in

lamellipodia. This pattern could be reproduced by stain-

ing with rhodamine-labeled phalloidin. Without any

doubt, this distribution was quite distinct from the mem-

brane distribution of full-length moesin-GFP or N-moes-

in-GFP fusion proteins and from the

immunofluorescence localization of the endogenous pro-

tein in untransfected control cells [13].

Side-by-side comparison of cells either expressing or not

expressing C-moesin-GFP did not reveal obvious differ-

ences in overall shape, behaviour and surface activity

(our unpublished data). Expression of the fusion protein
also did not affect quality or intensity of TRITC-phalloi-

din staining of the cells when compared to adjacent un-

Figure 1
C-moesin-GFP is co-localized with the microfilament
cytoskeleton. Fields containing transfected and untransfected
cells were imaged after staining with TRITC-phalloidin (a, c)
and compared with images obtained by fluorescence of the
same group of cells expressing C-moesin-GFP (b, d). The
transfected cell in (b) is attached to several other untrans-
fected cells. Its fluorescence pattern matches filopodia and
stress fibers, and is identical in distribution to microfilaments
stained with TRITC-phalloidin (a). Cells expressing different
levels of C-moesin-GFP are seen within the same field (d, 1-
4). The distribution of C-moesin-GFP is the same as that of
TRITC-phalloidin (c), regardless of level of expression.
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transfected cells. This implied that C-moesin-GFP does

not compete with phalloidin for binding sites and that, at

least during the observation period, microfilaments and

stress fibers apparently assembled normally in the pres-
ence of C-moesin-GFP. A similar distribution to that of

C-moesin was observed with corresponding fusion pro-

teins of ezrin or radixin consistent with the structurally

conserved F-actin binding sites of these fragments (Fig-

ure 2).

C-moesin-GFP as a Probe to Study Filopodial Microfila-
ments
By viewing cells for periods of up to several hours, and by

comparing time-lapse video images obtained by DIC

with fluorescence images we concluded that the intracel-

lular distribution of C-moesin-GFP reflected the distri-

bution of actin filaments that closely abut the plasma
membrane. It is for this reason that the changes in fluo-

rescence intensity and shape parallel the many discrete

changes in cell surface architecture that were observed

by DIC microscopy. F-actin-containing cellular struc-

tures could be monitored with a spatial resolution in the

order of 200 nm, and a temporal resolution of 3-5 sec-

onds even without the most sensitive camera (Figure 3).

An example of a moving pseudopodium, a large cell ex-

tension with advancing and retracting lamellae, is pre-

sented in Figure 3A, and an example of a smaller cortical

region during retraction of a lamella is shown in Figure

3B. Multiple discrete changes occur in this relatively

small area of the cell even during the short observation

period. In the sequence shown in Figure 3A, the pseu-

dopodium begins to alter its direction of migration. The

first frame identifies a small lamella encompassing sev-

eral ribbed filaments and a thinner pseudopodium ter-

minating in a retraction fiber on the left, and a number of
retraction fibers at the bottom edge. Multiple thick fila-

ment bundles can be seen within the body of the main

pseudopodium. In the 16 minute sequence, the left hand

lamella retracted, converting its ribs into retraction fib-

ers. The lamella could be observed withdrawing into the

body of the pseudopodium, while maintaining the same

fluorescence intensity. The rate of lamellar withdrawal

measured over different areas was 1.7 ± 0.5 µm/min.

By two minutes of observation, the cytoskeleton of the

structure near the upper arrow in Figure 3A has col-

lapsed and multiple kinks became apparent. A sequence

of this process with higher temporal resolution is shown

in Figure 3B. The sequence, showing bending and col-

lapse of the microfilament bundle, began 30 seconds af-

ter the first panel of Figure 3A, and ended 50 seconds

later. Seven minutes after this filopodium began to col-

lapse, fluorescence accumulated in a new filopodium
near the upper arrow and 9 minutes later this has disap-

peared again.

Figure 2
Comparison of cells expressing the C-terminal domains of
moesin, ezrin and radixin. NIH3T3 cells were transfected
with C-terminal domain-GFP fusion proteins of ezrin and
radixin As with moesin, no effect on cell behavior is seen 6
hours after transfection (a,b) Similar to C-moesin and con-
sistent with identical amino acid sequences of the F-actin-
binding region, both C-ezrin and C-radixin bind to actin fila-
ments in stress fibers (sf) (b,c,e,f) and numerous microexten-
sions. This localization is sensitive to cytochalasin D.

Figure 3
The distribution of C-moesin-GFP parallels dynamic changes
in the actin cytoskeleton. In (A), a live, fluorescent cell was
imaged for 16 minutes. Note retraction of a lamellipodium
(top arrow) and advance of another (lower arrow), as the
cell changes direction and begins to migrate towards the bot-
tom of the page. The retracting lamellipodium from (A) is
shown at higher magnification and temporal resolution in (B).
The fifty second sequence starts after the first panel of (A)
and ends before the second panel. Note kinking, buckling and
withdrawal of a rib-like microfilament bundle within the
lamella. See also three related movie files (Additional Mate-
rial). 
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The main portion of the pseudopodium showed complex

changes in its cytoskeletal fluorescence as some areas de-

creased in intensity and changed shape, while the tip

maintained the same level of fluorescence. The thick
bundles in the center of the main pseudopodium re-

mained relatively constant during this time period. In

contrast, the area at the lower edge of the cell began to

protrude. Forward moving lamellar veils enveloped

short filopodia by advancing at a rate of 0.85-1.5 µm/

minute and the latter became ribs within the lamella. By

16 minutes, some of these were observed to bend up-

wards and to detach from the substrate, collapsing back-

wards into the cell.

A close-up look at another cell edge is shown in Figure 4A

to illustrate that, even within a small area of the cell sur-

face, occupying only a few microns, multiple, independ-

ent and simultaneous changes in cytoskeletal

architecture could be visualized. The arrowheads in Fig-

ure 4A point to the same spot in all frames. The left-most

arrowhead illustrates rapid lamellar advance followed by

partial retraction and ruffling. The second and third ar-
rowheads point to a filopodial microfilament core that

advanced 4.6 µm within 10 minutes. Growth of this filo-

podial cytoskeleton (at 2nd arrowhead) was plotted over

time and the graphic representation showed that elonga-

tion was not continuous but oscillatory (Figure 4B). The

maximum rate of growth was 1.74 µm/min, but the over-

all rate of growth over 21 minutes was only 0.4 µm/min.

Although there was considerable variation, similar

growth rates and similar oscillatory behavior were ob-

served for numerous other filopodia regardless of wheth-

er cells expressed C-moesin-GFP or not. The right most

arrow head points to a second filopodial bundle that

elongated and then retracted, illustrating that within this

8 µm stretch of the cellular edge at least three independ-

ent types of cytoskeletal rearrangements were taking

place simultaneously.

To investigate whether the shape of microextensions de-

pended on microfilament content, we performed parallel

analysis by comparing DIC images with fluorescence im-

ages of their cytoskeletal cores. As shown in Figure 5,

when a microextension was attached to the substrate, its

cytoskeletal core could be withdrawn and microfila-

ments could reenter the membranous sheath without

necessarily inducing retraction or growth of the microex-

tension. This obviously was not the case for all microex-

tensions, since in growing and motile filopodia the

fluorescence signal matched their shape very closely in-

dicating that actin filaments filled a large amount of their

cytoplasmic space.

Cytochalasin D Changes the Distribution of C-moesin-GFP
The distribution of C-moesin-GFP appears to reflect rap-

id changes in microfilament organization in the moving

cell edge. We, therefore, expected this distribution to be

influenced by cytochalasin D. To investigate this, cells

were treated with varying concentrations of cytochalasin

D and imaged for different time periods before, during,

and after exposure to the drug. Within seconds after ad-

dition of cytochalasin D, protrusive activity at cellular
edges stopped as seen both by DIC and by fluorescence

imaging. As time progressed, C-moesin-GFP fluores-

cence began to fade in membrane extensions that were

attached to the substrate in a distal-to-proximal direc-

tion (Figure 6). This fading was incomplete and fluores-

cence remained associated with short segments and

intracellular dots that varied in size and signal intensity

that could be stained with phalloidin. Stress fibers also

began to disappear, but this required more time than the

disruption of microfilaments in microextensions. Bun-

dles of the original stress fibers could still be recognized

in a few cells 60 minutes after initiation of cytochalasin

D treatment. The example in Figure 6A shows the cellu-

lar morphology by DIC and the distribution of C-moesin-

GFP fluorescence in a cell treated with 20 µM cytochala-

sin D for 60 minutes. Other transfected cells showed

qualitatively similar responses, but the rate at which dis-

solution of the cytoskeleton occurred varied.

To test the effects of C-moesin-GFP on microfilament

stability and assembly in vivo, we treated cells express-

ing C-moesin-GFP with cytochalasin D for different peri-

ods of time, stained the cells with TRITC-phalloidin, and

scored transfected and untransfected cells for absence or

presence of stress fibers. The example in Figure 6B (pan-

els a & b) shows marked disruption of microfilament or-

Figure 4
Multiple, simultaneous, and independent rearrangements of
the microextension cytoskeleton are visualized by C-moesin-
GFP. A 10 minute time-lapse sequence of the edge of a live,
fluorescent cell is shown at high magnification in (A). The
arrowheads point to the same spot in each time-frame. In
(B), the growth of the middle filopodium from (A) was fol-
lowed over time (17 minutes) and the changes in length/time
are presented in this graph. See also three related movie files
(Additional Material).
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ganization, but the distribution of TRITC-phalloidin and

C-moesin-GFP was identical in both transfected and un-

transfected cells. The percentage of cells lacking stress

fibers was the same for transfected (97%) and untrans-

fected cells (95.5%) suggesting that C-moesin-GFP did

not significantly protect microfilaments from the effects

of cytochalasin D.

We also examined whether the presence of C-moesin-

GFP interfered with recovery of microfilament struc-

tures after removal of cytochalasin D. One hour after

drug washout, the cells expressing C-moesin-GFP

showed a pattern of cytoskeletal organization that could

not be distinguished from that of untransfected control

cells (Figure 6B, panels c, d). The rate of recovery may

have varied, however, since transfected cells tended to

have thinner retraction fibers at that time.

Discussion
A General Method for Definition of Microextensions and 
for Analysis of Dynamic Changes in the Actin Cytoskeleton
The changes in cell surface topography and movement of

cell surface microextensions in isolated cultured cells

Figure 5
DIC and fluorescence time-lapse imaging of microextensions
in live C-moesin-GFP transfected cells. C-moesin-GFP fluo-
rescence is seen to withdraw from and to re-enter an
attached microextension (arrows). Note that the fluores-
cence intensities of C-moesin-GFP in two closely spaced
microextensions, and hence their actin filament contents, are
independent of each other. This is illustrated on the right
side of the figure by showing intensity distributions at three
different points (indicated by lines B (for Base), M (for mid-
dle) and T (for Tip) in the four panel at the very bottom)
along the two filopodia. See also three related movie files
(Additional Material).

Figure 6
C-moesin-GFP does not interfere with microfilament rear-
rangements during and after treatment with cytochalasin D.
In (A), a transfected cell was imaged live by DIC (left) and C-
moesin-GFP fluorescence (right) during treatment with cyto-
chalasin D. The large arrow points at changes within one
pseudopodium. The small arrows point to filopodia and
retraction fibers. Note withdrawal and clumping of C-
moesin-GFP fluorescence. In (B), cells were treated for 30
minutes with 20 µM cytochalasin D (a, b) and then fixed, or
treated for 20 minutes and then allowed to recover for 1
hour after drug washout (c, d) before fixation. They were
then stained with TRITC-phalloidin (a, c) and imaged for C-
moesin-GFP fluorescence (b, d). Arrows point to identical
spots in parallel images.
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cannot easily be captured by images of fixed cells. To ap-

preciate the many changes in shape and in the actin cy-

toskeleton that take place simultaneously, even within a

relatively small area of the cell surface and within short
time spans time lapse recording of live cells is necessary.

This method clearly visualizes the dynamic nature of

changes virtually over the entire cell surface the entire of

the cell surface consisting of protrusion and retraction of

microspikes, filopodial and lamellipodial structures.

These changes occur continuously and do not appear to

be synchronized [18]. At any given time, the cells appear

irregularly shaped, with microspikes, broad lamellae,

filopodia and retraction fibers extending from the main

body towards the substrate, as well as others protruding

from their dorsal cell surfaces. These protrusions are dif-

ficult to differentiate from one another functionally on

the basis of shape alone, but time-lapse video microsco-

py at a focal plane near the surface of the culture dish al-

lowed us to distinguish between growing and motile, or

stable and retracting microextensions. We refer to ad-

vancing, motile and elongated microextensions as filopo-

dia, and to fixed and static structures as retraction fibers.

In the recent literature, such protrusions are summarily

and often interchangeably described as filopodia, micro-

villi, retraction fibers, or pseudopodia without regard to

potential structural or functional differences [19,20].

This deficiency is particularly evident, when comparing

immunofluorescence results from different laboratories,

because of the complex architecture of the cell surface
and the multitude of shapes of cells of different types and

from different organisms.

GFP was chosen as the fluorescent tag for imaging, be-

cause we found immunofluorescence of fixed cells to in-

adequately convey cytoskeletal dynamics of living cells

and because of limited stability of the actin cytoskeleton

during fixation and staining. The tagging of GFP has

been successfully applied to a large number of cytoskele-

tal proteins [21]. Previous studies with ezrin-GFP

showed its localization in ruffles and the leading edge of

pseudopodia [22]. Relevant to our work were also exper-

iments in D. melanogaster with the C-terminal fragment

of a moesin-related protein fused to GFP [23]. The cod-

ing region was placed under the control of the hsp70 pro-

moter for high level induction by heat shock of embryos.

By Western blot flies with two copies of the transgene ex-

pressed detectable protein by 90 min, but 1-2 hours were
required for fluorescence detection. Expression of the C-

terminal domain had two early effects: 1) Upon induc-

tion, flies became paralyzed, but they soon recovered.

This was thought to be caused by a temporary mechani-

cal disruption of neuronal structures. 2) Long membrane

processes appeared on specific cell surfaces within 2

hours after induction, but it could not be determined

whether C-moesin stimulated growth of new structures,

or whether it accumulated in normal structures that were

difficult to discern by other means. Most importantly,

however, the development of the embryo proceeded nor-

mally. This suggested that, at least in Drosophila, the C-
moesin-GFP fusion protein did not interfere with cellu-

lar functions. In recent fibroblast experiments, however,

Shaw et al. [16] noted that the C-domain was co-localized

with stress fibers by immunofluorescence in unstimulat-

ed cells, but in response to the constitutively active form

of Rho, RhoAV14, abnormally long and apical processes

were formed. In insect cells, overexpression of the C-do-

main of ezrin enhanced cell adhesion and elicited mem-

brane spreading that was accompanied by microspike

and lamelliopodial extension and the formation of unu-

sual, microtubule-containing thin processes, up to 200

µm in length [24]. Such unusual microextensions were

not observed in our experiments.

The capability for direct analysis of living cells has signif-

icant and important advantages over immunofluores-

cence techniques. Results do not depend on exposed or

available epitopes for antibody detection, and imaging of
live cells is more reliable, since loss of fragile microexten-

sions does not become an issue. We have observed such

loss by direct microscopic observation of cells during "on

stage" fixation and staining procedures for retrospective

immunofluorescence analysis and have found that we

could monitor, but not prevent such loss (our unpub-

lished observations).

Cytoskeletal Dynamics in Transient Microextensions
The intracellular distribution of C-moesin-GFP and im-

aging of stress fibers and microextensions with this

probe depended on filamentous actin as shown by the

disruption of the normal pattern of F-actin in subcortex

and stress fibers with the drug cytochalasin D. The

changes faithfully reproduce what is typically seen by

staining cells with phalloidin, namely withdrawal of ac-

tin from microextension and clumping within the cyto-
plasm. In our retrospective double-staining experiments

we saw precise correspondence between the C-moesin-

GFP fluorescence signal in the living cell and phalloidin

in the same cell before, during, and after drug treatment.

This strongly suggested that phalloidin and C-moesin do

not compete for binding and probably occupy different

binding sites on the filament.

Given the central importance of microfilament dynamics

for cell movement, many attempts have been made to

study actin rearrangements in vivo. Previous observa-

tions have mostly dealt with actin dynamics in lamellipo-

dia using fluorescent analogues of actin and caged

resorufin actin that were either microinjected or intro-

duced into permeabilized cells [25,26]. These studies

have shown that actin monomers are added at the distal

edge of lamellipodia, probably contributing to the pro-
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trusive force at the cellular edge, and that actin filaments

of the cortex are treadmilling or are in constant centrip-

etal flux [27,28]. Filopodia and retraction fibers were

rarely imaged, either because of choice of cell type, or be-
cause of difficulties in incorporating sufficient amount of

labeled actin into sparse filaments of growing microex-

tensions. More recent work with GFP-actin fusions, how-

ever, indicates that this probe is incorporated into

filopodial tips [29].

Our images obtained with C-moesin-GFP indicate that

cycles of microfilament protrusion and retraction occur

in stationary retraction fibers, as well as in protruding

and retracting microextensions. This may occur by actin

polymerization or forward and backward movement of

filaments, as has been observed in photoactivation ex-

periments of fluorescent labeled actin in retraction fibers

of spreading postmitotic PtK2 cells [30,31]. The rate of

protrusion and retraction of lamellipodia and filopodia

has been measured by many authors and it varied in dif-

ferent cell types [18,28,32,33,34]. The classical studies

by Abercrombie et al. [32] reported measurements of fi-
broblast lamellar growth ranging from stationary to 1.8

µm/min. These authors also first documented that

movement of the cell edge is oscillatory and is accom-

plished by advance and retraction of thin lamellae. The

same phenomenon was observed in the movement of

growth cones [35,36]. Our measurements of the rates of

advance and retraction of a few microextensions deter-

mined from the C-moesin-GFP images are in accord with

many of these earlier observations. This implies that the

C-moesin-GFP distribution fairly accurately reflects the

organization of the actin cytoskeleton and that it does

not interfere with filament functions in filopodia. It also

suggests that C-moesin-GFP may provide a sensitive new

tool for studying spatial and temporal control mecha-

nisms that regulate the actin cytoskeleton and its inter-

actions with the plasma membrane in small segments of

the cell cortex. The Rho family-Rho-GDI system (37,38),

Ca(2+) (39,40) and phosphatidyl 4,5-biphosphate (41)

are prime candidates for driving cellular processes by fil-

amentous actin. Although as yet unknown, it is quite

likely that filopodia play an important role in signaling

and motility of fibroblasts similar to their function in

neurite outgrowth.

Conclusions
Imaging of live NIH3T3 cells expressing the C-terminal

F-actin binding domain of moesin fused to GFP before,

during and after treatment with cytochalasin D, and ret-

rospective analysis with fluorescent phalloidin are con-

sistent with a pattern of actin microfilaments in different

regions of the cells. The high sensitivity of this method

allowed us to analyze dynamic and diverse changes that

occur spontaneously in small areas of the cell surface and

to distinguish microextensions according to their F-actin

content, motility and life history. C-moesin-GFP may

provide a sensitive new tool to study critical regulatory

steps required to support the highly dynamic interac-

tions between different cytoskeleton and membrane
components, and to unravel spatial and temporal rela-

tionships.

Materials and Methods
Recombinant DNA Constructs
Rat C-moesin cDNA (amino acid residues 382-557) was

prepared as a PCR product with flanking EcoR I sites and

introduced into the EcoR I sites of the expression vector

pCR™3-GFPmut2 [13,42]. The cloning resulted in the

addition of 7 amino acid residues (RIRSRIP) at the junc-

tion between the moesin and GFP sequence. Human C-

ezrin-GFP (amino acid residues 310-568) was construct-

ed by ligating a GFP-encoding Hind III-Xma I fragment

into pCR™3-ezrin that had been digested with Hind III

and Xma I to delete the N-terminal portion of ezrin. Hu-

man C-radixin-GFP (amino acid residues 408-583) was

made by ligating a GFP-encoding Kpn I-Pst I fragment

into pCR™3-radixin that had been digested with Kpn I
and Pst I to delete the N-terminal portion of radixin. The

sequences of all the constructs were verified using the

ABI PRISM™ DYE Terminator Cycle Sequencing ready

reaction Kit (Perkin Elmer, Norwalk, CT). Plasmid DNA

was prepared from Qiagen columns according to the

manufacturer's instructions (Qiagen Inc., Chatsworth,

CA).

Cell Culture and Electroporation
NIH3T3 cells were grown in Dulbecco's minimum essen-

tial medium (DMEM) supplemented with 10% fetal calf

serum (growth medium), at 37°C, under 5% CO2 atmos-

phere. One day prior to transfection the cells were split

and plated to reach 80-90% confluency on the following

day. Cells were harvested and resuspended in growth

medium at a concentration of 1.5-2 × 107 cells / ml. Two

hundred microliters of cell suspension and 10 µg of plas-
mid DNA in 50 µl of phosphate buffered saline (PBS), pH

7.4, were mixed in a 0.4 cm electroporation cuvette (Bio-

Rad, Richmond, CA). Cells and DNA were incubated to-

gether for 10 minutes at room temperature prior to

electroporation. Electroporation was carried out at 960

µF, 300 V and a resistance of 100 Ω (750 V/cm) using the

BioRad Gene Pulser apparatus with capacitance extend-

er. These conditions gave a time constant of 39-42. Im-

mediately after electroporation cells were resuspended

in growth medium and plated onto either glass coverslips

(2.5 × 104 cells/ cm2) for microscopic analysis, or onto

3.5 cm Falcon plastic culture dishes (Beckton Dickinson,

Lincoln, NJ) for biochemical analysis.

Antibodies and Reagents
Affinity purified polyclonal moesin specific rabbit anti-

bodies (pAbMo) were isolated from crude pAsMoER se-
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rum by affinity chromatography as described [12].

pAbMo and polyclonal antibodies specific for ezrin

(pAsE) and radixin (pAsR) were used for immunofluo-

rescence and immunoblotting [12,14]. For double im-
munofluorescence experiments, chicken antibodies

specific for moesin (ChG1, kindly provided by W. Lankes,

Berlin, Germany) and FITC-conjugated goat anti-chick-

en antibodies were used. The GFP polyclonal antibody

reagent was from Clontech Laboratories, Inc. (Palo Alto,

CA). Horseradish peroxidase (HRPO)-conjugated goat

anti rabbit antibodies were obtained from Boehringer

Mannheim Biochemicals (Indianapolis, IN). TRITC (te-

tramethylrhodamine isothiocyanate)-labeled phalloidin

and rhodamine-conjugated goat anti rabbit antibodies

were from Jackson Immunochemicals (West Grove, PA).

Digitally Enhanced Video Differential Interference Con-
trast (DEV-DIC) microscopy of Live Cells
Prior to microscopic analysis, transfected cells were al-

lowed to attach and spread on glass coverslips for 20

minutes to 6 hours in a CO2 tissue culture incubator.

Most experiments were carried out between 4-7 hours af-
ter transfection. The coverslips were transferred to a per-

fusion chamber on the microscope stage that held two

coverslips, separated by 200 µm spacers, and that al-

lowed for exchange of medium and other reagents. The

cells were viewed on a Zeiss Axiovert 35 inverted micro-

scope with a Zeiss Plan-Apochromat 100× oil immersion

lens and a short distance condenser. The microscope is

also equipped with a heated stage, differential interfer-

ence contrast (DIC) optics and epifluorescence. Filters

and lightpaths were controlled with a filterwheel and

shutters (Ludl Electronic Products Ltd., Hawthorne,

NY). For GFP visualization, a single band excitation filter

for FITC was used in combination with Pinkel#1 beam-

splitter and emission filter (Chroma Technology Corp.,

Brattleboro, VT). Tissue culture medium without phenol

red was kept warm and buffered in a CO2 incubator. The

medium was replaced every 5 minutes through the per-

fusion chamber, and the stage temperature was kept at

37°C with an automatic thermostat. Images were collect-

ed using a B&W C2400 CCD camera with on-chip inte-

gration and an Argus 20 digital image processor

(Hamamatsu Photonics, Japan).

Image Processing
For DEV-DIC images, the background from the optical

system was subtracted, and the contrast enhanced with

Argus 20 processor functions. On-chip-integration,

background subtraction of white noise, and frame aver-

aging was done for digital enhancement of fluorescence

recordings. To assemble the figures, selected frames

from the video tape were digitized on to a PowerTower™

225 computer using a Miro video digitizing board at its

highest resolution. The images were assembled into

composites using Adobe Photoshop™4.0. Prints were

made on a sublimation printer at 200 dpi resolution.

Short digital movies corresponding to the figures were

made using NIH Image™.
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